ICAO EUR/NAT and ACI EUROPE

REGIONAL GREEN AIRPORTS SEMINAR

Hosted by the Ministry of Transport Republic of Kazakhstan

Sustainable Aviation Fuel (SAF) Development in Kazakhstan

Amantay Kenzheali

Associate Banker, Sustainable Infrastructure Group EBRD

Assel Aitkulova

Senior Environmental Officer *AAK*

Yulia Lim

Chief Sustainability Officer Air Astana

Yasar Yetiskin

Sustainable Aviation Manager ICF

Agenda

Project Background Amantay Kenzheali

Actions Taken by Key Stakeholders

Yuliya Lim

Regulatory Requirements and Policy Options

Assel Aitkulova

Technical Aspects & Recommendations Yasar Yetiskin

SAF Market Drivers – Aviation Sector

- Aviation industry accounts for about 3% of global greenhouse gas emissions, and this share could rise to 22% by 2050 if no decarbonisation actions are taken due to the industry growth and the decarbonisation of the other sectors.
- Among the solutions available, SAF is the most important lever for decarbonising aviation.
- Despite the collective acknowledgment of SAF's pivotal role in decarbonising the sector, production volumes are currently insufficient to represent significant levels of carbon abatement: current production is less than 0.5 Mtpa compared to a market size of ~400 Mtpa.
- Airlines covering 40% of the global revenue passenger-kilometer have voluntarily committed to at least 10% SAF by 2030.

ICA080

SAF Market Drivers – Fuel Producers

- There is a significant increase in the volume of SAF production capacity expected to come online in the near term. Most of this will be produced via the HEFA pathway, although a small number of facilities using other pathways.
- UK and EU have strict regulations for the feedstock, which only allows using waste liquid lipids (used cooking oil and animal fat category 1 and 2) for SAF production. However, ICAO's CORSIA Eligible Fuel criteria allow utilisation of crop-based feedstock for SAF production. This resulted in large scale HEFA projects across the world, including the US, which are expected to utilise soybean oil, rapeseed oil and other food and energy crops.
- It is expected that HEFA capacity will plateau in 2030s, while AtJ and FT SAF supply increasing substantially.

ATAG Waypoint 2050, ICF analysis

ICA0

ICAO EUR/NAT and ACI EUROPE – REGIONAL GREEN AIRPORTS SEMINAR – KAZAKHSTAN 2024

MT SAF

Scope and Stakeholders Involved

Decarbonisation strategies

- Explore decarbonisation targets for the aviation sector
- Present the global SAF landscape
- Compare current targets in Kazakhstan with the relevant benchmarks and provide recommendations for increased ambition

SAF market analysis

- Demand and supply analysis
- Feedstock availability

SAF project definition

- Technology overview
- Technoeconomic assessment and pathway selection
- Project definition

Offtake and regulation

ICAO

- Develop a SAF offtake template
- Suggest regulatory reforms to develop SAF

Actions Taken by Key Stakeholders

2

Yuliya Lim *Air Astana*

54 ~5,3 YRS

AIRCRAFTS

AVERAGE FLEET AGE

DESTINATIONS

42

ROUTES

93

As of and for the neriod ended lune 20 2024

Air Astana Group: Our approach to sustainability

Air Astana Group: Our Approach to Sustainability – LCDP

- AA has developed a Low-Carbon Development Programme (LCDP) for 2023–2032. This includes:
 - Investing in fuel-efficient aircraft
 - Optimising flight routes
 - Implementing sustainable practices
 - Reducing waste and single-use plastics
 - Resource conservation, such as energy
- AA is currently compliant with EU ETS and CORSIA Carbon Offsetting and Reduction Scheme for International Aviation (includes all international flights between signatory nations).
- Within the next months, the AA plans to update its LCDP and consider a commitment to **net zero by 2050** in line with the long-term goal adopted by the ICAO, accompanied by near-term targets for the next five years.
- In line with the recent Association of Asia Pacific Airlines resolution, the Group has also set a target of achieving a collective **5% SAF blending by 2030** (subject to SAF availability on the market).

SAF development from civil aviation organization perspective

Aviation Administration of Kazakhstan

Civil Aviation Committee and ICAO signed ACT - SAF Agreement

ICAO

SAF development from civil aviation organization perspective

Aviation Administration of Kazakhstan

State Action Plan to reduce CO2 emissions

- Stakeholders:
- A. Civil Aviation Committee
- B. Airlines
- C. Airports
- D. Fuel producers
- E. Verification bodies
- F. Involved ministries
- Specific actions:
- A. SAF uplifting %
- B. Airports' renovations
- C. Due dates
- D. Future projects

AVIATION ADMINISTRATION OF KAZAKHSTAN

3

Assel Aitkulova AAK

SAF Market Drivers – Regulation

ICAO

Governmental policy support is essential to kick-start SAF production and demand in Kazakhstan

ICA080

ICAO EUR/NAT and ACI EUROPE – REGIONAL GREEN AIRPORTS SEMINAR – KAZAKHSTAN 2024

Several Approved Routes are Available for SAF Production

Pathway	Common name	Feedstock	Blending limit
FT-SPK	FT	Biomass (e.g. trash/rubbish, forestry residues, grasses)	50%
FT-SPK / A	FT	Same feedstock as FT-SPK, but slightly different process	10%
HEFA SPK	HEFA	Lipids & fats, oils, greases (e.g. Used Cooking Oil (UCO), tallow, DCO)	50%
HFS SIP	-	Sugars to hydrocarbon (e.g. molasses, sugar beet, corn dextrose)	50%
ATJ- SPK	ATJ	Agricultural waste (e.g. forestry slash, crop straws), waste CO $_{\rm 2}$	50%
ATJ- SK / A	ATJ	Same feedstock as ATJ-SPK, but slightly different process	10%
СН- НК	-	Plant and animal fats, oils and greases (FOGs)	50%
HC-HEFA SPK	HEFA	Bio-derived hydrocarbons, fatty acid esters	10%
Co-processed HEFA*		Fats, oils, and greases (FOG) co-processed with petroleum	5%
Co-processed FT*	Co-processing	Fischer-Tropsch hydrocarbons co - processed with petroleum	5%
Co-processed biomass*		Biomass co-processed with petroleum	5%

ICAO

SAF demand in KZ is expected to grow

SAF demand in Kazakhstan 2030-2050

Kilotonnes SAF 1,800 Balanced scale up phase Steep scale up phase 1,600 1,440 1,400 1,250 1,200 1,090 940 1,000 820 800 710 80 100 110 130 160 180 210 250 290 340 390 450 530 610 600 400 200 70 0 2030 2032 10³³ 2034 2035 2036 2031 2038 2039 2040 2041 2042 2042 2044 2045 2046 2041 2048 2049 2050 20³

ICAO

ICAO EUR/NAT and ACI EUROPE – REGIONAL GREEN AIRPORTS SEMINAR – KAZAKHSTAN 2024

Feedstock availability drives technology selection

Kilotonnes SAF

ICF analysis

ICA0

A combination of technologies will be required to scale up

SAF production technology selection for the first facility

	SAF	Consumer	Technology Readiness	CAPEX	Production	Feedstock	ASTM-
	rieiu	PTOXIMILY	Level (TRL)		COSI	Availability	approved
processing	High	Far	High	Low	Low	Low	\checkmark
nd - Alone	High	Close	High	Low	Low	Low	√
processing	High	Far	Low	Mid	Mid	High	×
nd - Alone	High	Close	Mid	Mid	Mid	High	\checkmark
ste CO ₂ Capture	High	Close	Low to Mid	High to Mid	High to Mid	High	√
sification	Low	Close	Low	High	High	High	√
n n S	processing Id - Alone processing Id - Alone if ication	SAF YieldprocessingHighd- AloneHighprocessingHighd- AloneHighd- AloneHighificationLow	SAF YieldConsumer ProximityprocessingHighFard- AloneHighCloseprocessingHighFard- AloneHighClosed- AloneHighClosede CO2 CaptureHighCloseificationLowClose	SAF YieldConsumer ProximityTechnology Readiness Level (TRL)processingHighFarHighd- AloneHighCloseHighprocessingHighFarLowd- AloneHighCloseMidd- AloneHighCloseMidad- AloneHighCloseMidificationLowCloseLow to Mid	SAF YieldConsumer ProximityFectinology Readiness 	SAF YieldConsumer ProximityPrechnology Readiness Level (TRL)CAPEXProduction CostprocessingHighFarHighLowLowd- AloneHighCloseHighLowLowprocessingHighFarLowMidMidprocessingHighCloseMidMidMidprocessingHighCloseMidMidMidprocessingHighCloseMidMidMidprocessingHighCloseMidMidMidprocessingHighCloseMidMidMidprocessingHighCloseMidMidMidprocessingHighCloseLow to MidHigh to MidprocessingHighCloseLow to MidHigh to MidprocessingLowHighCloseLow to MidHigh to MidprocessingLowMidHigh to MidHigh to MidprocessingHighCloseLow to MidHigh to High to MidprocessingHighCloseLowHighHigh to MidprocessingHighHighLowHighHighprocessingHighLowHighHighHighprocessingHighHighHighHighHighprocessingHighHighHighHighHighprocessingHighHighHighHighHighprocessing	SAF YieldConsumer ProximityPectifology Readiness Level (TRL)CAPEXProduction CostFeedstock AvailabilityprocessingHighFarHighLowLowLowd- AloneHighCloseHighLowLowLowprocessingHighFarLowMidMidHighor coessingHighCloseMidMidMidHighor coessingHighCloseMidMidMidHighor coessingHighCloseMidMidMidHighor coessingHighCloseLow to MidMidMidHighd- AloneHighCloseLow to MidHigh to MidMidHighde CO_2 CaptureHighCloseLowHighHigh to MidHigh to HighHighificationLowCloseLowHighHighHigh

ICAO

CAO EUR/NAT and ACI EUROPE – REGIONAL GREEN AIRPORTS SEMINAR – KAZAKHSTAN 2024

Must have criteria

SAF production technology selection for the first facility

		SAF Yield	Consumer Proximity	Technology Readiness Level (TRL)	CAPEX	Production Cost	Feedstock Availability	ASTM- approved
HEF A	Co-processing	High	Far	High	Low	Low	Low	\checkmark
	Stand - Alone	High	Close	High	Low	Low	Low	\checkmark
AtJ	Co-processing	High	Far	Low	Mid	Mid	High	X
	Stand - Alone	High	Close	Mid	Mid	Mid	High	\checkmark
	Waste CO ₂ Capture	High	Close	Low to Mid	High to Mid	High to Mid	High	\checkmark
FT	Gasification	Low	Close	Low	High	High	High	\checkmark
IC	ICAO							

CAO EUR/NAT and ACI EUROPE – REGIONAL GREEN AIRPORTS SEMINAR – KAZAKHSTAN 2024

Must have criteria

5 recommendations to scale up SAF in KZ

Agree on the ambition through public private collaboration

Establish a national SAF committee across the SAF value chain and use this to develop a national SAF target. Analysis showed that 4% SAF by 2030 and 65% SAF by 2050 is feasible in KZ.

Develop the regulatory framework

Policy support is key for scaling up SAF, especially at the early stages. Explore and assess potential such as incentives and/or mandates to support scaling up of SAF in KZ.

Establish Kazakhstan SAF Roadmap feedstock supply chain

KZ has the potential to produce up to 1.8 million tonnes of SAF through domestic feedstock. Invest in developing the national supply chain for collection of these feedstocks, and work towards increasing availability.

Kick-start SAF production

Focus on the first SAF facility. Alcohol to jet seems to have potential thanks to the existing the existing bioethanol industry.

Scale up supply with new technologies

Achieving aviation decarbonisation in KZ will require 1.4 Mt SAF by 2050. This requires the penetration of advanced SAF production technologies, but at a later stage than rest of the world, enabling cost advantage.

Thank you

For further information please contact:

Amantay Kenzheali Associate Banker, Infrastructure Eurasia Sustainable Infrastructure Group kenzheaa@ebrd.com

Yulia Lim Chief Sustainability Officer Air Astana Yulia.Lim@airastana.com

Assel Aitkulova Senior Environmental Officer Aviation Administration of Kazakhstan assel.aitkulova@caa.gov.kz

Yasar Yetiskin Manager Sustainable Aviation Yasar.Yetiskin@icf.com

Thank You

