

1090 Spectrum Consideration

Eric Potier

EUROCONTROL NM/INF/CNS - Head of monitoring ICAO SP Panel Member EUROCAE WG-49 (Mode S transponder) Chairman

The Automatic Dependent Surveillance-Broadcast

- Transmission on 1090 (MHz)
- 1090 RF model
- 1090 Monitoring in Europe
- 1090 Recommendations based on European experience

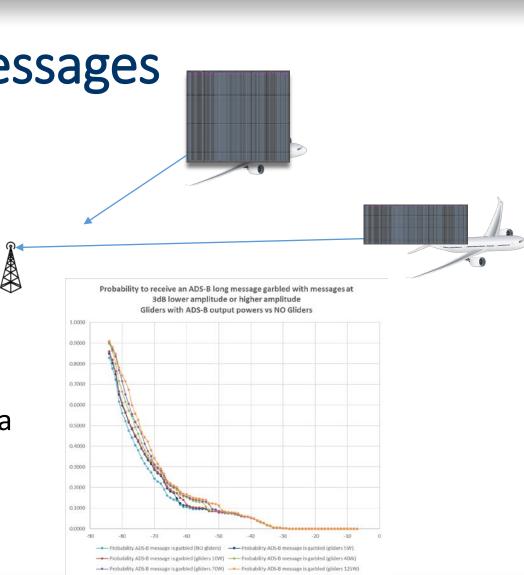
The Automatic Dependent Surveillance-Broadcast

Time

1090 ADS-B transmission

- 1090 MHz International link big benefits (Interoperability ...)
- Spontaneous transmission of messages (Extended Squitters) using Mode S waveform & format (DF17-DF18)

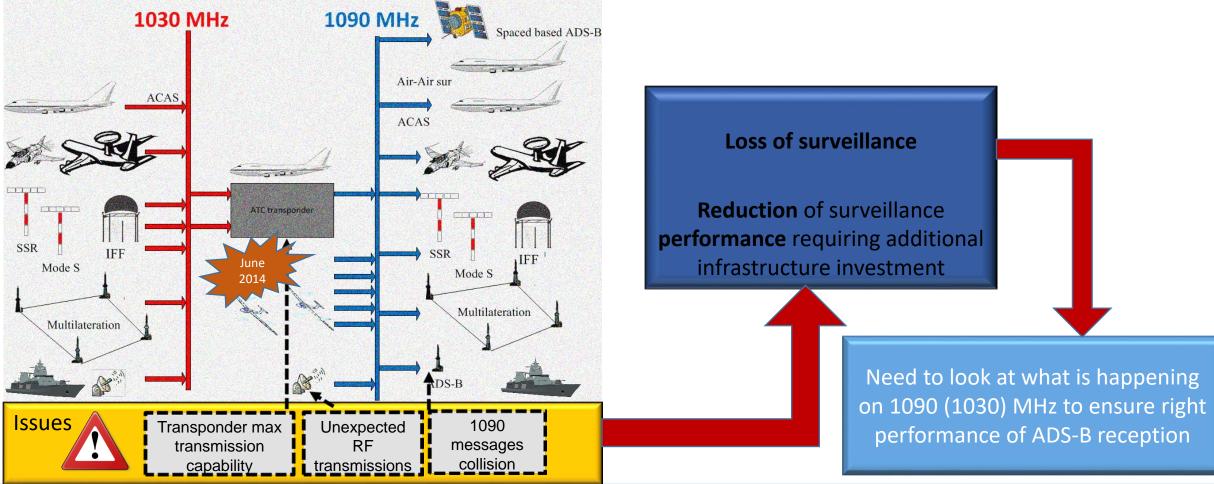
1090ES ADS-B Message	conditions	Airborne rate ADS-B V2	1s	1s	1s	1s	1s	1s	1s
Airborne Position		2 / 1 second 0.4 – 0.6 ss	$\star \star$	* *	* *	* *	* *	* *	* *
Surface Position		N/A							
Aircraft Identification and Category		1 / 5 seconds 4.8 – 5.2 s	* * *	* *			* * *	* *	* *
Airborne Velocity		2 / 1 second 0.4 – 0.6 s							
Aircraft Status (TCAS RA Broadcast, Subtype=2		0.7 – 0.9 s							
Aircraft Status (Emergency/Priority	Mode A Code Change	0.7 – 0.9 s		*					*
Status, Subtype=1)	No Mode A Change	4.8 – 5.2 s							
Target State and Status (TSS)		1.2 – 1.3 s	*	*	★	7	T	★	*
Aircraft Status (UAS/RPAS Contingency Current TCP, Subtype=4)		4.8 – 5.2 s			*				
Aircraft Status (UAS/RPAS		4.8 – 5.2 s							
Contingency Next TCP, Subtype=4									
Aircraft Operational Status	TSS being broadcast or not No change in TCAS/NAC/SIL/NIC _{SUPP}	2.4 – 2.6 s	*			*		*	
	TSS being broadcast Change in TCAS/NAC/SIL/NIC _{SUPP}	2.4 – 2.6 s							



The Automatic Dependent Surveillance-Broadcast

Reception of 1090 ADS-B messages

- Decoding performance affected by collision with other transmissions on 1090 MHz
 - ADS-B messages
 - Mode S replies triggered by radars/WAM
 - Mode S replies triggered by ACAS
 - Mode A/C replies
- Probability of decoding of one ADS-B message <<100% → need to wait for several messages in a period to have a useable decoded ADS-B information



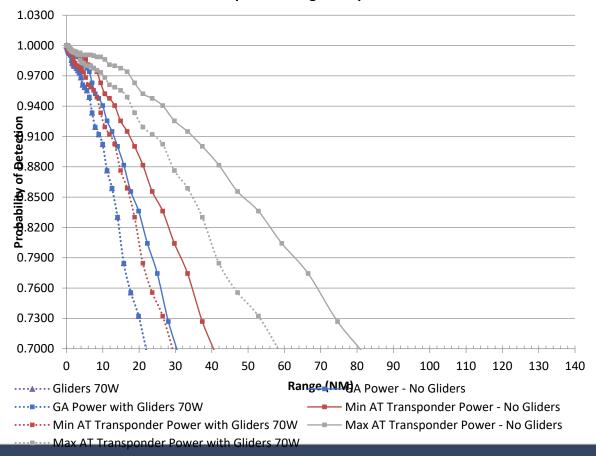
The Automatic Dependent Surveillance-Broadcast

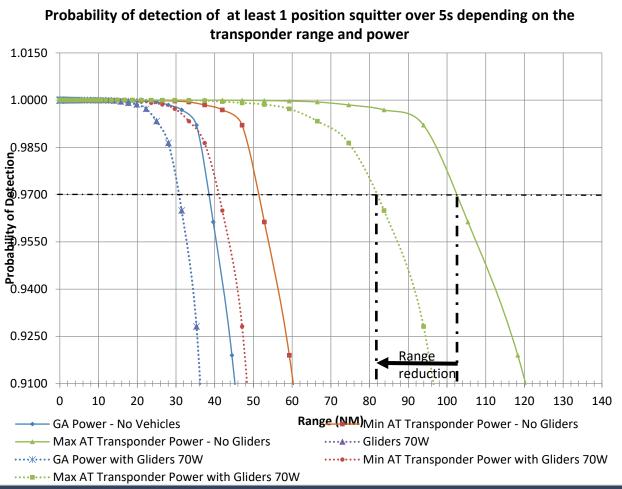
ADS-B 1030/1090 MHz environment

The ADS-B Webinar

The Automatic Dependent Surveillance-Broadcast

1090 RF model


- Activity on 1090 = f(interrogation ground & air, traffic, traffic capability density,...)
- Use of a software RF model to estimate the transmissions (3 models in Europe)
 - Ground scenario with all interrogators and their characteristics
 - Airborne scenario
 - real traffic snapshot
 - future scenario applying traffic increase (European STATFOR) or including additional platforms (gliders, UAS,....)
 - aircraft capabilities including ACAS active interrogations
- Two types of model: probabilistic or temporal



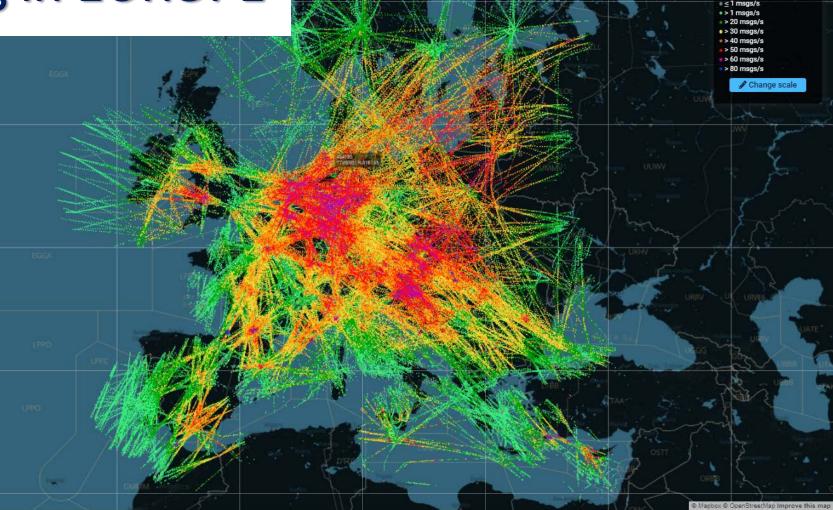
1090 RF model example of use

Probability of detection of at least 1 position squitter over 1s depending on the transponder range and power

The Automatic Dependent Surveillance-Broadcast

1090 RF model result examples

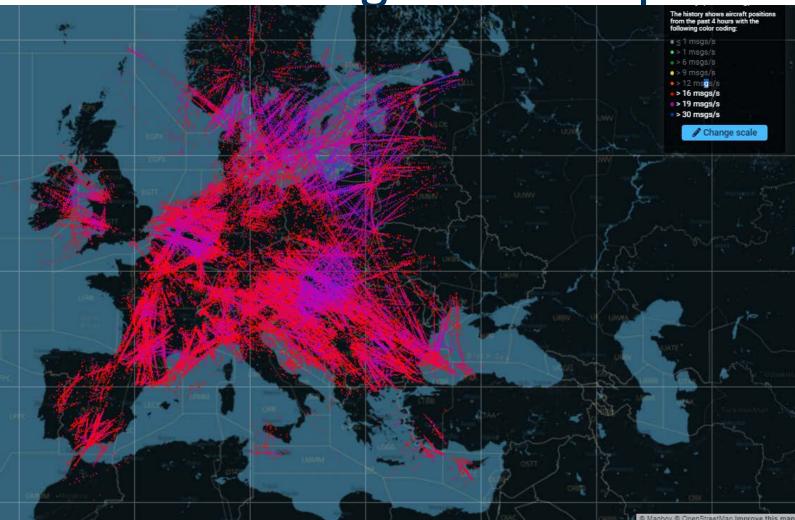
- A scenario of a set of 563 gliders (real event recording)
 - ADS-B normal messages
 - Various powers
 - Glider scenario moved around a big airport in Europe
 - Results ADS-B range reduction from 8% to 50% depending on power scenario
- Small UAS future scenario
 - Various densities of UAS (1.74 3.5 or 10.5 /NM² up to 5736 UAS received)
 - Various low powers
 - Noticeable impact on ADS-B range up to -40% with 1W of transmission
 - Support ICAO State letter (SP 44/2 19/77) requiring consideration before accepting 1090 on UAS



History (Peak Total

1090 Monitoring in EUROPE

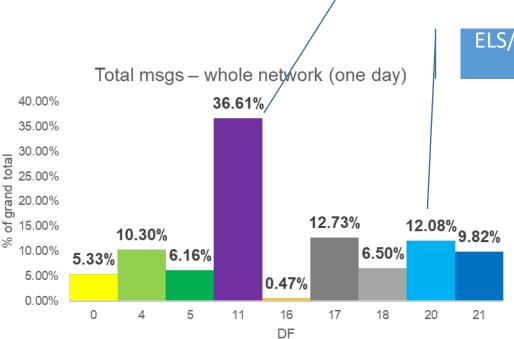
Central application Euopean Monitoring



The Automatic Dependent Surveillance-Broadcast

1090 Monitoring in EUROPE – long Mode S replies

- Area >16 message /s /aircraft
- Network not yet covering all aisapce



The Automatic Dependent Surveillance-Broadcast

1090 Monitoring in EUROPE – long Mode S replies

- Statistics 1 full day in June 2021 – full EUROCONTROL airspace
- Issue with All Call (DF11)
- Issue with DF20/21 (long Mode S replies used to support ELS and EHS)

ELS/EHS long Mode S family in number

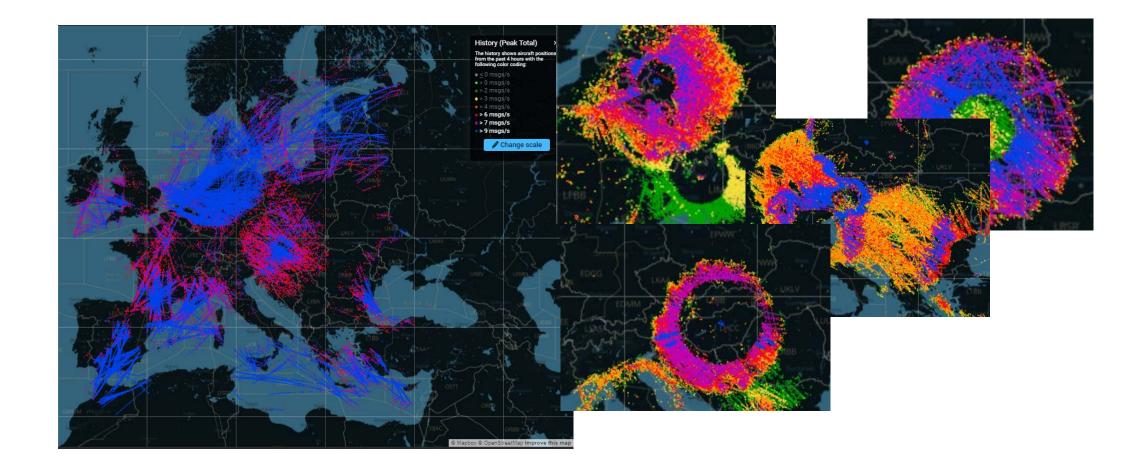
First family in number

Current situation on 1090 MHz in Europe

- Still too many Mode A/C replies
 - level in number still 30 times above Mode S at some places
 - Great majority of civil infrastructure is Mode S (>600 Mode s radars in European region)

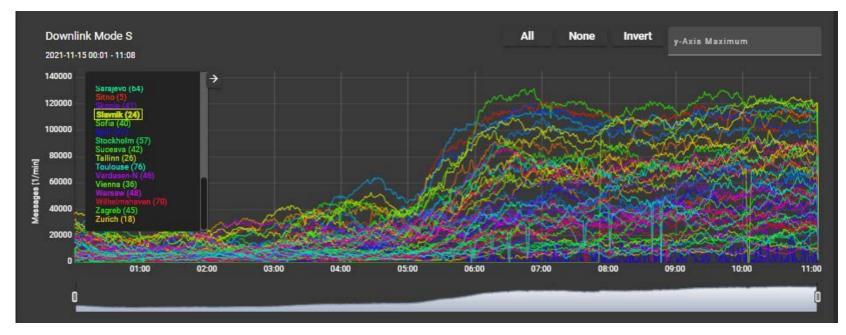
The Automatic Dependent Surveillance-Broadcast

Transponder activity in Europe


- Bad situation at transponder activity level
 - Too many transmissions on 1090MHz
 - Mode S reply rate / aircraft >> 50/S (peaks of several hundreds of Mode S replies /s)
 - Mode S long reply rate / aircraft >>16/second (area with more than 50/s)
 - Real issue encountered in June 2014
 - Some transponder transmitters too warm -> stop transmission of all messages including ADS-B to cool down

The Automatic Dependent Surveillance-Broadcast

Examples of Mode S all call (DF11) pollution



The Automatic Dependent Surveillance-Broadcast

Mode S/ADS-B 1090 MHz in Europe

• Receiver load very different from place to place

• Different performance & traffic increase possible

Recommendations for good use of 1090 MHz

- Decommission remaining Mode A/C interrogators
- Avoid/limit mobile interrogators using no lockout or lockout override
- Reduce all call pollution
 - Limit number of all call replies <6 /beam as specified in ICAO Annex 10 Volume IV \rightarrow lower possible
 - correct configuration of lockout range/map
 - correct configuration of power transmitted
 - Reduce gaps between radar using the same IC (IC allocation, Clustering use)
- Avoid too many interrogators extracting transponder registers in the same area
- Use Airborne information Available in ADS-B rather than extracting using an interrogation
- Optimize system/ share data between different users

The Automatic Dependent Surveillance-Broadcast

Summary

- 1090 MHz frequency is a resource to manage carefully (as any communication network resource)
 - Interrogator side
 - Check/optimize interrogator configuration
 - Before transmission \rightarrow plan \rightarrow authorize
 - During operation \rightarrow verification
 - Airborne side increase possible however
 - Consider which new types of platform to accept on 1090MHz with which capability
 - Consider ACAS types optimizing the use of 1090 by using ADS-B (Hybrid surveillance extended - ACAS X)

The Automatic Dependent Surveillance-Broadcast

THANK YOU

