Tropospheric Corrections for GNSS Receivers

The Atmosphere and its Effect on GNSS Systems 14 to 16 April 2008 Santiago, Chile

Dr. M. Bakry El-Arini

Overview

- Tropospheric Correction Model for SBAS Receivers
 - From WAAS MOPS, Reference [1]
- Tropospheric Correction Model for GBAS Receivers
 - From LAAS MOPS, Reference [2]
- Tropospheric Correction Model for GPS Receivers
 - Receiver manufacturers can use any tropospheric model

Tropospheric Correction Model for SBAS Receivers

Tropospheric Delay Correction (Section A.4.2.4 (Reference [1])

 The tropospheric delay correction, TC_i (in meters), for satellite i takes the form

$$TC_i = -(d_{hyd} + d_{wet}) \cdot m(El_i)$$

- where
 - d_{hyd} (m) = estimated zenith range delay caused by atmospheric gases in hydrostatic equilibrium
 - d_{wet} (m) = estimated zenith range delay caused by water vapor respectively, and
 - m(El_i) = mapping function to scale the delays to the actual satellite elevation angle (El_i)

- Calculated from the receiver's height and estimates of five meteorological parameters:
 - Pressure [P (mbar)]
 - Temperature [T(K)]
 - Water vapor pressure [e (mbar)]
 - Temperature lapse rate [β (K/m)]
 - Water vapor "lapse rate" (λ (dimensionless))
- Values of each of the five meteorological parameters, applicable to the receiver latitude [φ] and day-of-year [D] (starting 1 January of each year), are computed from the average and seasonal variation values given in Table A-2 of Reference [1] and upcoming slide

Calculation of d_{hyd}, and d_{wet} 2 of 3

• Each parameter value ξ is computed as:

$$\xi(\phi, D) = \xi_0(\phi) - \Delta\xi(\phi) \cdot \cos\left(\frac{2\pi(D - D_{\min})}{365.25}\right)$$

- where $D_{min} = 28$ for northern latitudes, $D_{min} = 211$ for southern latitudes, and ξ_0 , $\Delta \xi$ are the average and seasonal variation values for the particular parameter at the receiver's latitude
- For latitudes $|\phi| \le 15^\circ$ and $|\phi| \ge 75^\circ$, values for ξ_0 and $\Delta \xi$ are taken directly from Table A-2 of Reference [1]
- For latitudes in the range $15^{\circ} < |\phi| < 75^{\circ}$, values for ξ_0 and $\Delta \xi$ at the receiver's latitude are each pre-calculated by linear interpolation between values for the two closest latitudes $[\phi_i, \phi_{i+1}]$ in Table A-2 of Reference [1]:

$$\xi_{0}(\phi) = \xi_{0}(\phi_{i}) + \left[\xi_{0}(\phi_{i+1}) - \xi_{0}(\phi_{i})\right] \cdot \frac{(\phi - \phi_{i})}{(\phi_{i+1} - \phi_{i})}$$
$$\Delta\xi(\phi) = \Delta\xi(\phi_{i}) + \left[\Delta\xi(\phi_{i+1}) - \Delta\xi(\phi_{i})\right] \cdot \frac{(\phi - \phi_{i})}{(\phi_{i+1} - \phi_{i})}$$

Calculation of d_{hyd}, and d_{wet} 3 of 3

Zero-altitude zenith delay terms [z_{hyd}, z_{wet} (m)] are calculated as:

$$z_{hyd} = \frac{10^{-6} k_1 R_d P}{g_m} \qquad z_{wet} = \frac{10^{-6} k_2 R_d}{g_m (\lambda + 1) - \beta R_d} \cdot \frac{e}{T}$$

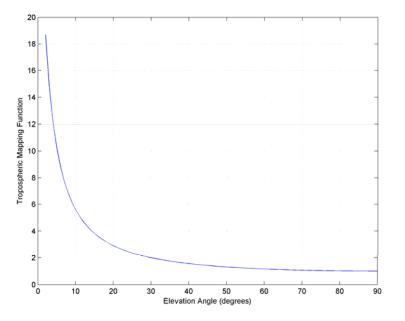
• Where $k_1 = 77.604$ K/mbar, $k_2 = 382000$ K²/mbar, $R_d = 287.054$ J/(kg·K), and $g_m = 9.784$ m/s².

$$d_{hyd} = \left(1 - \frac{\beta H}{T}\right)^{\frac{g}{R_d\beta}} \cdot z_{hyd} \qquad \qquad d_{wet} = \left(1 - \frac{\beta H}{T}\right)^{\frac{(\lambda+1)g}{R_d\beta}-1} \cdot z_{wet}$$

 Where g = 9.80665 m/s² and the receiver's height, [H] is expressed in units of meters above mean sea level.

Meteorological Parameters for Tropospheric Delay (Table A-2 of Reference [1])

Latitude (°)	Average				
	P ₀ (mbar)	T ₀ (K)	e ₀ (mbar)	$egin{array}{c} eta_0 \ (K/m) \end{array}$	λ_0
15° or less	1013.25	299.65	26.31	6.30e-3	2.77
30	1017.25	294.15	21.79	6.05e-3	3.15
45	1015.75	283.15	11.66	5.58e-3	2.57
60	1011.75	272.15	6.78	5.39e-3	1.81
75° or greater	1013.00	263.65	4.11	4.53e-3	1.55
	Seasonal Variation				
Latitude (°)	ΔP (mbar)	$ \begin{array}{c} \Delta T \\ (K) \end{array} $	∆e (mbar)	$\Delta \boldsymbol{\beta}$ (K/m)	Δλ
15° or less	0.00	0.00	0.00	0.00e-3	0.00
30	-3.75	7.00	8.85	0.25e-3	0.33
45	-2.25	11.00	7.24	0.32e-3	0.46
60	-1.75	15.00	5.36	0.81e-3	0.74
75° or greater	-0.50	14.50	3.39	0.62e-3	0.30

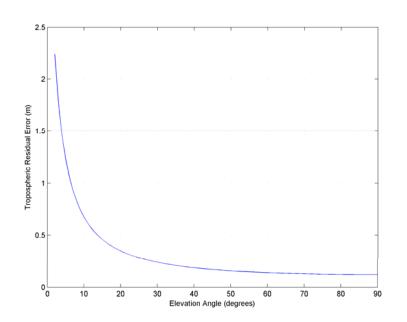

Tropospheric Mapping Function m(EI)

• For $EI_i \ge 4$ degrees:

$$m(El_i) = \frac{1.001}{\sqrt{0.002001 + \sin^2(El_i)}}$$

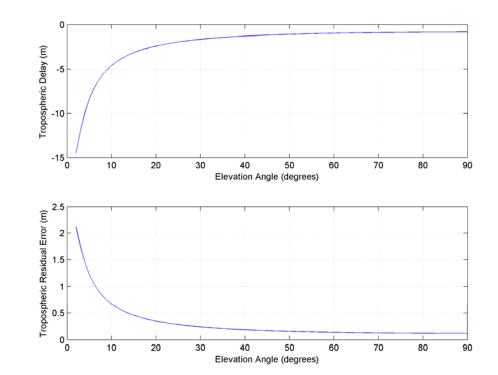
For El_i ≥ 2 degrees
 [Reference 3]

$$m(El_i) = \left(\frac{1.001}{\sqrt{0.002001 + \sin^2(El_i)}}\right) \cdot \left(1 + 0.015 \cdot \left(MAX \begin{bmatrix} 0\\ (4^\circ - El_i) \end{bmatrix}\right)^2\right)$$



Tropospheric Residual Error

 Tropospheric residual Error in meters


$$\sigma_{i,tropo} = (\sigma_{TVE} \cdot m(El_i))$$

- Where
 - σ_{TVE} = 0.12 m (zenith tropospheric residual error)
 - m(El_i) = mapping function

Example Santiago, Chile

- Lat/Lon: 33:28S/70:45W
- Date: April 15, 2008
- Day of Year = 106
- Aircraft Altitude = 30,000 ft (9,144 meters)

Tropospheric Correction Model for LAAS/GBAS Receivers

Tropospheric Correction in meters

• Paragraph: 3.3.2.14 [Reference 2]

 $TC(El) = TC_V .m(El), \text{ where}$ $TC_V = 10^{-6} N_R h_0 \left(1 - e^{-\frac{\Delta h}{h_0}}\right) = \text{Zenith Delay (meters)}$ $m(El) = \frac{1}{\sqrt{0.002 + \sin^2(El)}} = \text{Mapping Function}$

El = Elevation Angle (radians)

 N_R = Refractivity index transmitted by ground system

 Δh = Difference in altitude between airborne and ground subsystems (meters)

 h_0 = Troposphric scale height transmitted by the ground subsystem (meters)

Residual Tropospheric Error (meters)

• Paragraph: 3.3.2.15 [Reference 2]

 $\sigma_{tropo}(El) = \sigma_{tropo,V}.m(El), \text{ where}$ $\sigma_{tropo,V} = 10^{-6} \sigma_N h_0 \left(1 - e^{-\frac{\Delta h}{h_0}}\right) = \text{Error in Zenith Delay (meters)}$ $m(El) = \frac{1}{\sqrt{0.002 + \sin^2(El)}} = \text{Mapping Function}$

El = Elevation Angle (radians)

 σ_N = Refractivity index error transmitted by ground system

 Δh = Difference in altitude between airborne and ground subsystems (meters)

 h_0 = Tropospheric scale height transmitted by the ground subsystem (meters)

References

- 1. RTCA, Inc., *Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System*, DO-229D, RTCA, Inc., Washington, D.C., 2006.
- 2. RTCA, Inc., *Minimum Operational Performance Standards for Local Area Augmentation System*, DO-245A, RTCA, Inc., Washington, D.C., 2004.
- Bellingham, S., "A Modified Tropospheric Model for Satellite Elevation Angles to 2°," Presentation to RTCA SC-159 WG-2, March 9, 2005.