ICAO AERODROME PAVEMENT WORKSHOP

Design Examples Using FAARFIELD 2.1

Presented to: ICAO Aerodrome Pavement Workshop Dakar, Senegal

Navneet Garg, Ph.D. Dan Offenbacker, P.E., Ph.D. Date: 24 October 2024

By:

FAARFIELD 2.1

Flexible Pavement Design Example

Flexible Pavement Design Example

A flexible pavement is being designed for a new runway at a commercial airport in Washington, D.C. Based on the information obtained from the Airport Master Plan, the new runway is expected to handle the traffic mix presented in Table 1. Eight soil borings were performed for this project, the results of which are presented in Table 2.

Table 1. Airc	raft traffic mi	<pre>c for flexible</pre>	pavement	design	example.
---------------	-----------------	---------------------------	----------	--------	----------

Aircraft	Departure Weight, kg	Arrival Weight, kg	Annual Departures
S-30	13,608	10,206	8000
Fokker F-100	44,452	34,019	6500
B737-300	62,822	52,163	5000
B767-300 ER	158,757	131,541	3200
A380-800	544,310	462,664	400
B777-300	263,083	237,682	1500

Boring No.	UCSC Soil Type	Moisture Content, %	Optimal MC, %	Dry unit weight, kN/m ³	Water Table Depth, m	CBR, %
B-1	SC	12.2	10.4	20.26	3	10.6
B-2	SC	14.4	12.2	19.57	3	7.2
B-3	SC	16.5	9.6	20.80	2.5	8.4
B-4	CL	15.8	13.5	18.88	2.0	6.3
B-5	CL	17.0	14.5	19.24	2.4	4.8
B-6	CL	16.2	13.8	18.96	1.7	5.9
B-7	CL	16.8	12.6	19.48	1.4	4.2
B-8	CL	14.2	12.8	20.14	1.8	6.4
Average	:					
Std. Deviation:						

Table 2. Soil boring results for flexible pavement design example.

24 October 2024

FAARFIELD 2.1 Design Examples

Flexible Pavement Design Example

- 1. What do the soil boring results tell us about the in situ soil properties? What subgrade support value do you recommend for design?
- 2. What type and thickness of base/subbase materials do you recommend? Are positive drainage features required?
- 3. Should the pavement be designed for aircraft arrival or departure weights? What is the required flexible pavement thickness for the runway? What is the most demanding aircraft?
- 4. Perform a sensitivity analysis on the following variables:
 - Average annual departures of most demanding aircraft (+/- 10 percent of departures).
 - Departure weight of the most demanding aircraft (+/- 10 percent of weight).
 - Subgrade modulus (+/- 10 percent of modulus).

Flexible Pavement Design Example

- 1. What do the soil boring results tell us about the in-situ soil properties? What subgrade support value do you recommend for design?
- 2. What type and thickness of base/subbase materials do you recommend? Are positive drainage features required?
- 3. Should the pavement be designed for aircraft arrival or departure weights? What is the required flexible pavement thickness for the runway? What is the most demanding aircraft?

Boring No.	UCSC Soil Type	Moisture Content, %	Optimal MC, %	Dry unit weight, kN/m ³	Water Table Depth, m	CBR, %
B-1	SC	12.2	10.4	20.26	3	10.6
B-2	SC	14.4	12.2	19.57	3	7.2
B-3	SC	16.5	9.6	20.80	2.5	8.4
B-4	CL	15.8	13.5	18.88	2.0	6.3
B-5	CL	17.0	14.5	19.24	2.4	4.8
B-6	CL	16.2	13.8	18.96	1.7	5.9
B-7	CL	16.8	12.6	19.48	1.4	4.2
B-8	CL	14.2	12.8	20.14	1.8	6.4
Average):	15.4	12.4	19.66	2.3	6.7
Std. Dev	viation:	1.7	1.7	0.68	0.6	2.0

Starting Screen – No Job Files Created

Creating/Naming a Job File

Selecting Structure

Design Options

Materials Library – Layer Types

Aircraft Library

Aircraft Library – Completely reorganized and updated for the FAARFIELD 2.0 release

Aircraft ×	Aircraft ×	Aircraft ×					
FAARFIELD Aircraft Group	FAARFIELD Aircraft Group	FAARFIELD Aircraft Group					
Generic	Generic	Generic	Generic	Generic	Generic	Generic	Generic
Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus	Airbus
Boeing	Boeing	Boeing	Boeing	Boeing	Boeing	Boeing	Boeing
McDonnell Douglas	McDonnell Douglas	McDonnell Douglas					
Other Large Jet	Other Large Jet	Other Large Jet					
Regional/Commuter	Regional/Commuter	Regional/Commuter	Regional/Commuter	Regional/Commuter	Regional/Commuter	Regional/Commuter	Regional/Commuter
General Aviation	General Aviation	General Aviation					
Military	Military	Military	Military	Military	Military	Military	Military
Non-Airplane Vehicles	Non-Airplane Vehicles	Non-Airplane Vehicles					
External Library	External Library	External Library					
FAARFIELD Aircraft Library	FAARFIELD Aircraft Library	FAARFIELD Aircraft Library					
SWL-2	A300-B2	B707-320C	DC3	An-124	BAe 146-300/300QC/300QT	Beechcraft Baron 55	A400M LH
SWL-5	A300-B2K	B717-200 HGW	DC8-63/73	An-225	BeechJet-400/400A	Beechcraft Bonanza F33A	A400M LN1
SWL-10	A300-B4/C4 Std Bogie	B727-100C Alternate	DC9-32	Bombardier CS100	Bombardier CL-604/605	Beechcraft King Air 300	A400M TLL1
SWL-50	A300-B4/C4 LGA Bogie	B727-200 Advanced Basic	DC9-51	COMAC C919	Cessna Citation II/Bravo C55	Beechcraft King Air 350	A400M TLL2
S-3	A300-600 Std Bogie	B727-200 Advanced Option	DC/MD-10-10/10F	COMAC C919 ER	Cessna Citation V	Beechcraft King Air B100	B-52
S-5	A300-600 LGA Bogie	B737-100	DC/MD-10-30/30F/40	Fokker-F-100	Cessna Citation VI/VII	Beechcraft King Air B200	C-5
S-10	A310-200	B737-200 Advanced QC	MD-11	Fokker-F-28-1000/2000	Cessna Citation X	Beechcraft King Air C90	C-17A
S-12.5	A310-300	B737-200	MD-83	F-28-3000/4000/6000	CRJ100/200	Cessna 172 Skyhawk	C-123
S-15	A318-100 std	B737-300	MD-90-30 ER	IL-62	CRJ100ER/200ER	Cessna 182 Skylane	C-130
S-20	A318-100 opt	B737-400		IL-76T	CRJ100LR/200LR	Cessna 206 Stationair	C-130-57
S-25	A319-100 std	B737-500		IL-86	CRJ700	Cessna 208B Grand Caravan	C-130-70
S-30	A319-100 opt	B737-600		L-100-20	CRJ900	Cessna 414/414A Chancellor	F-15C
S-30 HTP	A319neo	B737-700		L-1011	CRJ1000	Cessna C210 Centurion	F-16C
S-35 HTP	A320-200 std	B737-800		TU-134A	Dassault Falcon 50/50EX	Cessna C441 Conquest II	F/A-18C
S-40 HTP	A320-200 opt	B737-900		TU-154B	Dassault Falcon 900B/C	Cessna Citation M2 C525	KC-10
S-45	A320-200 WV000 Bogie	B737-900 FR				▲ ►	P-3C 🔻

24 October 2024

FAARFIELD 2.1 Design Examples

Creating Aircraft Traffic Mix

Subgrade CBR

Performing Pavement Thickness Design

FAARFIELD 2.1.1 (Build 12/21/2023) - 6 × Select All DeSelect All 😧 New Job 🗁 Open Job 🔶 New Structure 🗃 Save Job 📮 Save As 🚔 Save All 🗙 Close Job User Defined Aircraft 🞍 Create 🏦 Edits (?)Help Reset X Exit × Design Options * 7 tructure Summary Report Aircraft * 7 X FAARFIELD Aircraft Group Calculate HMA CDF: No + • 🔜 🗙 tructure Generic Status Gear Structure Job Name: New Job 1 Thickness Design Run Reduced Cross Section: No ~ Boeing ✓ Include in Summary Report Add To Batch Structure Name: New Structure ' McDonnell Douglas Automatic flexible Yes v Other Large Jet Pavement Lavers base design: Regional/Commuter Pavement Type: New Flexible General Aviation Slab Stress Displayed: No ~ CRR Military Material Thickness (mm) E (MPa) P-401/P-403 HMA Surface 102 Non-Airplane Vehicles E=1.378.95 MPa T = 102 mmNo v Output file: P-401/P-403 HMA Stabilized External Library P-209 Crushed Aggregate 254 Metric Subgrade 48.61 T=127 mm E=2,757.90 MPa Unite Allow Elevible Computation for Thick Yes ~ Overlays on PCC Compute ACR for All No -Select As The Design Layer Delete Selected Layer Subgrade Categories Design Life (Years): 20 FAARFIELD Aircraft Library Show Advanced Options 8757-200 The standard design life for pavement structure is 20 years (1 to 50 allowed). B757-300 Recuite C88=47 E=48.61 MPa B767-200 Calculated Life (Years): Total thickness to the top of the subgrade (mm): 483 Set as Program Reset Default to B767-200 ER Default Initial B767-300 B767-300 ER Copy Structure to Clipboard 8767-300 ER/Freighter Show/Hide Pavement Image * 4 × Traffic 8767-400 ER 8777,200 Stored Aircraft Mix BKK Example Change Pavement Graphics Save Aircraft Mix to File Clear All Aircraft from List Remove Selected Aircraft from Structure Delete Aircraft Mix File B777-200 ER 8777-200 LR Gross Taxi Annual Annual Total CDF Max for Tire Pressure Percent GW Tire Contact Tire Contact Tire Contact Airplane Name P/C Ratio User Defined Aircraft Directory: 8777-300 Weight (kg) Departures Growth (%) Departures Contributions Airolane (kPa) on Gear Width (mm) Length (mm) Area (mm²) CAUsers\David Brill\Documents B777-300 ER 517.11 122,580 \$-30 13,608 8.000 160.000 0.95 312 500 My FAARFIELD/User Defined 1043.63 450 99,204 Fokker-F-100 44.452 6 500 130,000 0.95 281 Aircraft\ 8737-300 62.822 5.000 100.000 1370.99 0.95 291 466 106 724 B777-9 Change Aircraft Directory B787-8 8767-300 ER 158,757 3.200 64 000 0 1168.60 0.95 355 568 158,205 A380-800 WV000 544 310 400 8.000 1455.74 0.38 372 596 174.171 B787-9 A380-800 W//000 Belly 544 310 400 8.000 1455 74 372 596 174,171 B787-10 B777-300 263.083 1.500 30.000 0 1298.75 0.95 354 566 157.264 mExplorer KAircraft Materia Design Option: Notes User Information

Click "Run" to start pavement thickness design

Completed Pavement Thickness Design

CDF Chart

G FAARFIELD 2.1.1 (Build 12/21/2023)

Job Information

Design Options

4 Structures

Summary Report

A New Structure 1

CDF Graph

PCR Graph

mExplorer KAircraft @Material

Airport Master Record

A New Job 1

New Job Dpen Job (+) New Struct

Federal Aviation Administration

Job Name: New Job 1 Structure: New Structure 1 Analysis Type: New Flexible Analysis Run Time: 2024-01-30 09:15:41 Last Run: Thickness Design

Structure Report

F

Life/Compaction

Life/Compaction

Compaction Requirements

	FAARFIELD 2.1.1 (Build 12/21/2023) New Job New Job New Struct	ure 🖥 Save Job 🖳 Save As 🏹 Save All 🗙 Close Job User C	efined Aircraft 🞍 Create 🏦 Edit 🛛 Batch Run Selec	tion Select All DeSelect All	(655		() Help	- di × ∧Reset X Exit
	Explorer	Structure Summary Report Structure Report CDF Gra	ph			×	Design Options	▼ 4 ×
	▲ New Job 1			Save As PDF			Calculate HMA CDF:	Yes v
	Job Information		Subgrade Com	paction Requirements				
	Design Options						Reduced Cross Section	No v
	Summary Report		Non	Cohesive Soil			Automatic flouible	
Section Report	Structure T	Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (mm)	Depth of compaction from top of subgrade (mm)	Critical Airplane for Compaction		base design:	Yes v
Section Report	CDE Graph	100	0 - 738		A380-800 WV000 Belly		Siab Stress Displayed:	NO V
	PCR Report	95	738 - 2202	0 - 1293	A380-800 WV000 Belly		0.4.46	No. v
	PCR Graph	90	2202 - 4042	1293 - 3133	A380-800 WV000 Belly		Output nie:	140 .
	Airport Master Record	85	4042 - 6075	3133 - 5166	A380-800 WV000 Belly		Makia	
							Units: Metho	*
			Co	hesive Soil			Allow Flexible Computation for Thick	Yes v
		Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (mm)	Depth of compaction from top of subgrade (mm)	Critical Airplane for Compaction		Overlays on PCC Compute ACR for All	No v
		95	0 - 706		A380-800 WV000 Belly		Subgrade Categories	
		90	706 - 1540	0 - 630	A380-800 WV000 Belly		Show Advanced	Ontinus
		85	1540 - 2751	630 - 1842	A380-800 WV000 Belly	- 11	Show Advanced	Options
		80	2751 - 3967	1842 - 3057	A380-800 WV000 Belly			
		Subgrade Compaction Notes: 1. Noncohesive soils, for the purpose of det	ermining compaction control, are those	with a plasticity index (PI) less than 3.			Set as Program Res Default	et Default to Initial
		2. Tabulated values indicate depth ranges w	ithin which densities should equal or exc	eed the indicated percentage of the ma	ximum dry density as specified in item P-152.		Show/Hide Pavem	ent Image
		3. Maximum dry density is determined using	ASTM Method D 1557.				Change Pavement	Graphics
		 The subgrade in cut areas should have nat the densities shown, or (c) when economics in-place densities are satisfactory. For swelling soils refer to AC 150/5320-6F 		User Defined Aircraft D C:\Users\David Brill\Do \My FAARFIELD\User D Aircraft\	irectory: cuments efined			
	#aExplorer ▼Aircraft ●Material	NOTE: User is responsible for checking frost p	rotection requirements.			~	Change Aircraft Design Option: Notes	Directory User Information

PCR

•	Structure Summary Re	port Structure Rep	ort CDF Graph	n				- C	lick	"Ru	n" te	o ex	ecut	e P	CF	R Computa	atio
ob 1	Structure			_	/												
Information	Job Name: Now	lah 1	PCR		v		Status	Gear Structu	re								
ign Options	New York and The New	1001				Kull										Reduced Cross Section: No	~
imary keport	Structure Name: New	Structure 1	✓ In	clude in Sumr	nary Report	Add To Batc										Automotic Bacility	_
ctures	Pavement Layers															base design:	~
New Structure 1	Pavement Type:	New Flexible															_ _
CDE Graph	Material		Thickness (r	mm) E (M	/IPa) CI	BR										Slab Stress Displayed: No	~
PCP Report	P-401/P-403 HM	AA Surface	102	1,37	8.95												_ _
PCR Graph	P-401/P-403 HM	AA Stabilized	127	2,75	7.90											Output file: No	~
Airport Marter Perord	> P-209 Crushed	Aggregate	681	435	.58												_ _
An port master needed	Subgrade			48.6	31 4.3	7										Units: Metric	~
			Select As The D	esign Layer	Delete	Selected Layer										Overlays on PCC Compute ACR for All Subgrade Categories	~
	Design Life (Years): 2 The standard design	10 life for pavement str	Select As The D ructure is 20 yea	esign Layer ars (1 to 50 al	Delete :	Selected Layer P/TC Ratio: 1										Compute ACR for All Subgrade Categories No Show Advanced Options	× •
	Design Life (Years): 2 The standard design Results Calculated Life (Years)	i0 life for pavement str t: 20.0	Select As The D ucture is 20 yea Total thicknes	esign Layer ars (1 to 50 al is to the top o	Delete : lowed).	Selected Layer P/TC Ratio: 1 de (mm): 909										Computation for All No Subgrade Categories Show Advanced Options Set as Program Default Reset Default 1 Initial	•
	Design Life (Years): 2 The standard design Results Calculated Life (Years)	0 iife for pavement str	Select As The D ucture is 20 yea Total thicknes	esign Layer ars (1 to 50 al is to the top o	Delete : lowed).	Selected Layer P/TC Ratio: 1 de (mm): 909									×	Compute ACR for All Subgrade Categories Show Advanced Options Set as Program Default Show/Hide Pavement Image	•
	Design Life (Years): 2 The standard design Results Calculated Life (Years) Traffic Stored Aircraft Mix	0 life for pavement str 20.0 BKK Example	Select As The D ucture is 20 yez Total thicknes	esign Layer ars (1 to 50 al is to the top o	Delete :	Selected Layer P/TC Ratio: 1 de (mm): 909 File Cle	r All Aircraft	from List	Remove Sele	cted Aircraft fr	rom Structure	Delete Airc	raft Mix File		* X	Overlays on PCC the local of th	•
	Design Life (Years) 2 The standard design Results Calculated Life (Years) Traffic Stored Aircraft Mix Airplane Name	ife for pavement str k 20.0 BKK Example Gross Taxi Weight (kg)	Select As The D ucture is 20 yea Total thicknes	esign Layer ars (1 to 50 al is to the top of Save Al Annual Growth (%)	Delete :	Selected Layer P/TC Ratio: 1 de (mm): 909 File Cle CDF Contributions	ar All Aircraft CDF Max for Airplane	from List P/C Ratio	Remove Sele Tire Pressure (¿cPa)	ected Aircraft fr Percent GW on Gear	rom Structure Tire Contact Width (mm)	Delete Airco Tire Contact Length (mm)	raft Mix File Tire Contact Area (mm²)	ACR Thi (D)	×	Overfays on PCC Concepte ACR for All Subgrade Categories Show Advanced Options Show Advanced Options Set as Program Default Show/Hide Pavement Image Change Pavement Graphics User Defined Arcraft Directory:	•
	Design Life (Years), Z The standard design i Results Calculated Life (Years) Traffic Stored Aircraft Mix Airplane Name 5-30	EXK Example BKK Example Gross Taxi Weight (Kg) 13.608	Select As The D ucture is 20 yes Total thicknes Annual Departures 8.000	esign Layer ars (1 to 50 al s to the top o Save Al Annual Growth (%) 0	Delete :	File Cle	rr All Aircraft CDF Max for Airplane 0	from List P/C Ratio 0	Remove Sele Tire Presure (kPa) 517.11	cted Aircraft fr Percent GW 0.95	om Structure Tire Contact Width (mm) 312	Delete Airc Tire Contact Length (mm) 500	raft Mix File Tire Contact 122.580	ACR Thi (D) 0	×	Overlays on PCC Inco Compute ACR for All Subgrade Categories No Show Advanced Options Initial Statut Reset Default Show/Hide Pavement Image Change Pavement Graphics User Defined Aircraft Directory: CNUMERT David Brill/Documents Wire FARFIELUSEr David Brill/Documents Statut Directory:	•
	Design Life (Years): 2 The standard design Results Calculated Life (Years) Traffic Stored Aircraft Mix Airplane Name S-30 Forker.F-100	0 life for pavement str k 20.0 BKK Example Gross Taxi Weight (kg) 13.608 44.452	Select As The D ucture is 20 year Total thicknes	esign Layer ars (1 to 50 all ss to the top of Save Al Annual Growth (%) 0	Delete : lowed). of the subgrad	Selected Layer P/TC Ratio: 1 de (mm): 909 File Cle CDF Contributions 0	r All Aircraft CDF Max for Airplane 0	From List P/C Ratio 0 0	Ramove Sele Tire Pressure (kPa) 517.11 1043.63	ected Aircraft fr Percent GW on Gear 0.95 0.95	rom Structure Tire Contact Width (mm) 312 281	Delete Airc Tire Contact Length (mm) 500 450	raft Mix File Tire Contact Area (mm ³) 122.580 99.204	ACR Thi (D) 0 0	×	Overfays on PCC tool (1997) Compute ACR for All Subgrade Categories Show Advanced Options State Program Default Reset Default Initial Show/Hide Pavement Image Change Pavement Graphics User Defined Aircraft Directory: CC/Users/David Bin/Documents Wy FAARFIELDU/Ser Defined Aircraft	•
	Design Life (Vean): 2 The standard design Results Calculated Life (Vean) Traffic Stored Aircraft Mix Airplane Name S-30 Fokker100 8737-300	0 iife for pavement str (20.0) BKK Example Gross Tadi Weight (kg) 13.608	Select As The D ucture is 20 year Total thickness Annual Departures 8.000 6.500 5.000	esign Layer ars (1 to 50 al as to the top of Save Al Annual Growth (%) 0 0	Delete : lowed). of the subgrad	Selected Layer P/TC Ratio: P/TC Ratio: 1 de (mm): 909 File Cle COF Contributions 0 0 0 0	r All Aircraft CDF Max for Airplane 0 0	From List P/C Ratio 0 0	Remove Sele Tire Pressure (kPa) 517.11 1043.63 1370.99	ected Aircraft fr Percent GW on Gear 0.95 0.95 0.95	om Structure Tire Contact Width (mm) 312 281 291	Delete Airc Tire Contact Length (mm) 500 450 456 555	raft Mix File Tire Contact Area (mm ⁵) 122.580 99.204 106.724 156.907	▼ ♠ : ACR Thi (D) 0 0 0 0 0	×	Overfays on PCC Compute ACR for All Subgrade Categories Show Advanced Options Set as Program Default Show/Hide Pavement Image Change Pavement Graphics User Defined Aircraft Directory: Ct\User Aircraft	
	Design Life (Years), Z The standard design Results Calculated Life (Years) Stored Aircraft Mix Airplane Name S-30 Fokker-100 B737-300 B737	20.0 BKK Example Groto Taxi Weight (kg) 13.600 44.452 62.822 158.757 54.830	Total thicknes	esign Layer ars (1 to 50 al s to the top o Save Al Annual Growth (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Delete	File Cle Contributions 0 0 0 0	ar All Aircraft CDF Max for Airplane 0 0 0	From List P/C Ratio 0 0 0 0	Remove Sele Tire Pressure (kPa) 517.11 1043.63 1370.99 1168.60 1465 74	ected Aircraft fr Percent GW on Gear 0.95 0.95 0.95 0.95 0.95	Tire Contact Width (mm) 312 281 291 355 372	Delete Airc Tire Contact Length (mm) 500 450 466 568 568 566	raft Mix File Tire Contact 122:580 99:204 105:724 158:205 174:171	ACR Thi (D) 0 0 0 0 0	×	Overfays on PCC Inc. (Inc.) Compute ACR for All Subgrade Categories Show Advanced Options Set as Program Default Show/Hide Pavement Image Change Pavement Graphics User Defined Aircraft Directory: CUSers/David Brit/Document My FAAFFILD/User Defined Aircraft	

Results of PCR computations

▼ .4.	Structure Summary Report	Structure Repo	ort CDF Graph	n										1	C Design Opti	ions	▼ 1 3	×
	Structure													V V X	Calculate	HMA CDF:	Yes v	
nation	Job Namer Namer	1	PCR		~	Bue	Status G	Sepr Structure	•									
ptions	Not Name. New Job					Kun	PCR Cal	ulation of Ne	w Structure 1.0	ompleted					Reduced	Cross Section	n: No 🗸	
Report	Structure Name: New Stru	icture 1	✓ In	clude in Summ	ary Report	Add To Batch	Run Tim	te: 12 seconds		ompietet		~ .	1.11					
Structure 1	Pavement Layers						PCR = 8	350/F/D/X/T			PCR	Calcu	ulatioi	n of I	New 5	struc	ture	1 Comple
ucture Report	Pavement Type: New	w Flexible		v							-		4.0					
E Graph	Material		Thickness (mm) E (M	IPa) CI	BR					Run	lime	: 12 s	econ	ds			
R Report	P-401/P-403 HMA S	urface	102	1,37	8.95		1				DOD	0.5	0 /F /D	AUT				
R Graph	P-401/P-403 HMA St	tabilized	127	2,75	7.90						РСК	= 85	U/F/D	/X/T				
port Master Record	> P-209 Crushed Aggr	egate	681	435.	58	7												
	subgrade			40.0	4.	/	1								Units:	Metri	c ×	
		S	ielect As The D	esign Layer	Delete	Selected Layer									Compute	ACR for All	No v	
	Design Life (Years): 20 The standard design life for Results Calculated Life (Years):	Dr pavement str	ucture is 20 yea	ars (1 to 50 all	owed). f the subgra	P/TC Ratio: 1								v •	Stag ave	ow Advanced rogram Re ault Re	d Options eset Default to Initial	
	Design Life (Years): 20 The standard design life for Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK	Dr pavement str	ucture is 20 year Total thicknes	ars (1 to 50 all is to the top of Save Air	owed). f the subgrad	P/TC Ratio: 1 de (mm): 909 File Clear	All Aircraft fro	om List	Remove Sele	cted Aircraft 1	from Structure	Delete Airc	raft Mix File	v v t x	Set as Pi Defa	ow Advanced rogram Re ault Re v/Hide Paven	d Options eset Default to Initial nent Image et Graphics	
	Design Life (Years): 20 The standard design life for Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK Airplane Name	Example Gross Taxi Weight (kg)	Total thicknes	ss to the top of Save Air Growth (%)	the subgrad	P/TC Ratio: 1 de (mm): 909 File Clear CDF Contributions f	All Aircraft fro	om List P/C Ratio	Remove Sele Tire Pressure (kPa)	cted Aircraft I Percent GW on Gear	from Structure	Delete Airc Tire Contact Length (mm)	raft Mix File Tire Contact Area (mm²)	× ACR Thi (D)	Show Show Char	ow Advancec rogram Re ault Re nge Pavemen ned Aircraft I	d Options eset Default to Initial nent Image et Graphics Directory:	
	Design Life (Years): 20 The standard design life fo Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK Airplane Name S-30	Example Gross Taxi Weight (kg) 13.608	Total thicknes	ss to the top of Save Air Growth (%) 0	f the subgrai	File Clear CDF Contributions 1 0 0 0	All Aircraft fro CDF Max for Airplane	om List P/C Ratio 3.7	Remove Sele Tire Pressure (kPa) 517.11	cted Aircraft f Percent GW on Gear 0.95	from Structure Tire Contact Width (mm) 312	Delete Airc Tire Contact Length (mm) 500	raft Mix File Tire Contact Area (mm ⁵) 122.580	▼ ♣ × ACR Thi (D) 427 ▲	Show Show Set as Pr Defa Show Char User Defi C\UserS) Why FAAR	rogram ault Re ault Re mge Pavemen ned Aircraft I David Brill/D	d Options iset Default to Initial nent Image at Graphics Directory: ocuments Defined	
	Design Life (Years): 20 The standard design life fo Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK Airplane Name 5-30 Fokker-F100	Example Gross Taxi Weight (kg) 13.608 44.452 62.932	Total thicknes	st to the top of Save Ain Annual Growth (%) 0	the subgrait f the subgrait craft Mix to Total Departures 160,000 130,000	File Clear COFF Contributions 0 0 0	All Aircraft fro CDF Max or Airplane	P/C Ratio 3.7 2.07	Remove Sele Tire Pressure (kPa) 517.11 1043.63 5370.00	cted Aircraft f Percent GW on Gear 0.95 0.956 0.906	from Structure Tire Contact Width (mm) 312 281 201	Delete Airco Tire Contact Length (mm) 500 450	raft Mix File Tire Contact Area (mm ²) 122,580 99,204	• • • • • • × ACR Thi (D) 427 • • • • • • • • • • • • • • • • • • •	Stady ave	rogram Re ault Re	d Options eset Default to Initial nent Image et Graphics Directory: ocuments Defined	
	Design Life (Years): 20 The standard design life for Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK Airplane Name 5-30 Fockker-F-100 B737-300 B767-300 FR	r pavement stri Example Gross Taxi Weight (kg) 13,608 44,452 62,822 158,757	Total thicknes	st o the top of Save Air Annual Growth (%) 0 0	the subgrad	P/TC Ratio: 1 de (mm): 909 File Clear CDF Contributions f 0 0 0 0 0 0	All Aircraft fro	om List P/C Ratio 3.7 2.07 2.18 1.13	Remove Sele Tire Presure (kPa) 517.11 1043.63 1370.99 1166.60	cted Aircraft f Percent GW on Gear 0.955 0.936 0.930	from Structure Tire Contact Width (mm) 312 281 291 355	Delete Airc Tire Contact Length (mm) 500 450 466 568	raft Mix File Tire Contact Area (mm ³) 122.580 99.204 106.724 158.205	• • • • • • • • • • • • • • • • • • •	State as Pr Defa Show Char User Defi C(User) Why FAAS Aircraft	ow Advancec rogram ault w/Hide Paven nge Pavemen ned Aircraft I David BrilDD SFIEDUSer I ange Aircraft	d Options set Default to Initial nent Image it Graphics Directory: ocuments Defined Directory	
	Design Life (Years): 20 The standard design life fo Results Calculated Life (Years): Traffic Stored Aircraft Mix BKK Airplane Name 5-30 Fokker F-100 B737-300 ER A369-500 WV000	r pavement stra Example Gross Taxi Weight (kg) 13.608 44.452 62.822 158.757 54.310	Total thickness Annual Departures 8,000 6,500 3,200 400	s to the top of Save Air Annual Growth (%) 0 0 0 0 0	traft Mix to Total Departures 160,000 130,000 64,000	Clear File Clear CDF Contributions f 0 0 0 0 0 0 0 0 0 0	All Aircraft fro DF Max for Airplane	om List P/C Ratio 3.7 2.07 2.18 1.13 1.19	Remove Sele Tire Pressure (kPa) 517.11 1043.63 1370.99 1168.60 1455.74	cted Aircraft Percent GW on Gear 0.95 0.956 0.908 0.924 0.38	from Structure Tire Contact Width (mm) 312 281 291 355 372	Delete Airc Tire Contact Length (mm) 500 450 456 568 556	raft Mix File Tire Contact Area (mm ²) 122.580 99.204 106.724 158.205 174.171	▼ ♣ × ACR Thi (D) 427 ▲ 643 699 805 960	Stogatoe Shu Set as Pr Defa Show Chare Vidy FARR Aircraft Chare	ow Advancec rogram ault w/Hide Paven nge Pavemen ned Aircraft I David BrilDD SFIED\User I ange Aircraft	d Options eset Default to Initial nent Image it Graphics Directory: Directory	

PCR Report

v Job 🛅 Open Job 🕂 New Structu	re 🗟 Save Jo	ob 😬 Save As 🍙 Save All	🗙 Close Job User Defined Aircraft 🛓	Create 🟦 Edit Batch Run Sel	ection	All PAVEAIR Access	_		(?)Help 🗠 Re
· 🔽	Structure	Summary Report Struct	ure Report CDE Graph PCR Report						
uloh 1		summary nepore sudde	are neport - con orophi - conneport						
ab Information					Save As P	DF			
Desize Options		terrent succession of such a							
esign Options	max	amum number of whe	es per gear = o						
ammary Report	CDF	= 0.980							
ructures									
New Structure 1	At l	east one aircraft has 4	f or more wheels per gear.						
Structure Report									
CDF Graph									
PCR Report					Results Table 1. Inpu	t Traffic Data			
PCR Graph									
Airport Master Record	No.	Aircraft Name	Gross Wei (kg)	ght Percent	t Gross Weight	(MPa)	Annual D	eparture 20 Year	rs Coverage
	1	S-30	13,608	95.00		517.11	8,000	43,206	
	2 Fokker-F-100		44,452	95.60		1,043.63	6,500	62,737	
	3	B737-300	62,822	90.80		1,370.99 5,00		45,957	
	4	B767-300 ER	158,757	92.40		1,168.60	3,200	56,882	
	5	A380-800 WV000	544,310	38.00		1,455.74	400	6,721	
	6	A380-800 WV000 B	elly 544,310	57.00		1,455.74	400	9,115	
	7	B777-300	263,083	94.80		1,298.75	1,500	35,719	
	No.	Aircraft Name	Critical aircraft Total equiv.	. departures	Results Table 2. Max allowable Gross W	PCR Value	t (kg)	ACR Thick at max. MGW (n	nm) PCR/F/D
	1	A380-800 WV000	518		544,954			961	847.8
	No.	Aircraft Name	Gross Weight	Results Table 3. M	New Flexible ACR at Ind	icated Gross Weight a	e Pressure	ACR Thick (mm) (D)	ACR/F/D
	1	5.20	12.608	05		517	11	427	112.9
	2	Fokker-E-100	44 452	95.6		1.0	43.63	643	314.6
	2	B737-300	62.822	90.8		1,0	70.99	699	382.9
	4	B767-300 ER	158.757	97.4		1,3	68.60	805	543.8
		4380 800 M0/000	E44 340	05		1,1	55 74	060	945.7
		A300-000 VV VIIIII	344.310	7.1			33.74	700	04.1.7

PCR Graph

PCR.

design.

٠

Airport Master Record

FAARFIELD 2.1.1 (Build 12/21/2023)	re 🗟 Save Job 📔 Save As 🎧 Save All 🗙 Clo	se Job User Defined Aircraft 🛓 Create 🛓 Edit Batch Ru	n Selection 😰 Select All 🛅 DeSelect All 📳 PAVEAIR Access	U.S. air	ports use this	
Explorer 💽 🔛	Structure Summary Report Structure Rep	ort CDF Graph PCR Report PCR Graph Airport N	laster Record	informa	tion to nonulate	tha
New Job 1 Information			Save As PDF	morma	nion to populate	
Design Options Summary Report		Federal Aviation Administrat	ion FAARFIELD 2.1 Airport Master Record	Airport	Master Record (A	\MR
 A New Structure 1 		FAARFIE	LD 2.1.1 (Build 12/21/2023)		base design:	
Structure Report CDF Graph PCR Report	RUNWAY DATA				Slab Stress Displayed: No v	
PCR Graph	Job Name: New Job 1				Output file: No V	
Airport Master Record	Structure: New Structure 1				Units: Metric v	
		Gros	s Weight (In THSDS)	-	Allow Flexible Computation for Thick: Versigns or RCC Compute ACR for All Subgrade Categories	
		35 S	120		Show Advanced Options	
		36 D	250			
		37 2D	352		Set as Program Reset Default to Default Initial	
		38 2D/2D2	864		Show/Hide Pavement Image	
					Change Pavement Graphics	
		39 PCR	850/F/D/X/T		User Defined Aircraft Directory: C\User\David BrillDocuments \Wy FARFIED\User Defined Aircraft\	
maExplorer ♥Aircraft ●Material					Change Aircraft Directory Design Option: Notes User Information	

Rigid Pavement Design Example Using FAARFIELD 2.1

Typical Rigid Pavement

NOTES:

- 1. RUNWAY, TAXIWAY AND SHOULDER WIDTHS; TRANSVERSE SLOPES, ETC. PER AC 150/ 5300-13, AIRPORT DESIGN
- 2. SURFACE, BASE, PCC, ETC. THICKNESS PER AC 150/5320-6.
- 3. STABILIZED BASE, BASE AND SUBBASE MINIMUM 12 INCHES [30CM] UP TO 36 INCHES [90 CM] BEYOND FULL STRENGTH PAVEMENT.
- CONSTRUCT A 1.5 INCH [4 CM] DROP BETWEEN PAVED AND UNPAVED SURFACES.

- 5. WHEN REQUIRED, SEE PARAGRAPH 3.5.
- 6. LOCATION AND NEED FOR DRAINAGE LAYER AS RECOMMENCED BY GEOTECHNICAL AND PAVEMENT ENGINEER.
- 7. WHEN RECOMMENDED BY GEOTECHNICAL AND PAVEMENT ENGINEER.

Rigid Pavement Design in FAARFIELD

- Considers only one mode of failure for rigid pavement, bottom-up cracking of the concrete slab.
- Cracking is controlled by limiting the horizontal stress at the bottom of the concrete slab.
- The rigid pavement design model does not explicitly consider failure of subbase and subgrade layers.

Rigid Pavement Failure Model

• FAARFIELD rigid failure model:

$$DF = \left[\frac{F'_s bd}{(1-\alpha)(d-b) + F'_s b}\right] \times \log C + \left[\frac{(1-\alpha)(ad-bc) + bc}{(1-\alpha)(d-b) + F'_s b}\right]$$

where:

 $SCI = \alpha \times 100 \quad 0 \le \alpha \le 1$

- $DF = \text{design factor} = R/\sigma$
- R =concrete flexural strength (ASTM C78)
- $\sigma = \max$. computed tensile stress
- C = coverages
- F'_s = compensation factor for stabilized base
- *a*, *b*, *c*, d = parameters determined by full-scale test
- DF is linear in log(C).

24 October 2024 FAARFIELD 2.1 Design Examples

Concrete Flexural Strength

- Design flexural strength between 600 and 750 psi (4.14 to 5.17 MPa) is recommended for most airfield applications.
- Avoid design flexural strengths higher than 750 psi (5.17 MPa), unless it can be shown that higher strength mixes are produced by normal methods using local materials, i.e., without relying on excessive cement contents or additives likely to negatively impact durability.
- The strength used in thickness design is different than the strength used for material acceptance in P-501.
 - Design strength can be 5% higher than specified 28-day strength.

Subgrade Modulus

- FAARFIELD automatically converts *k* to *E*, and vice-versa.
- The conversion formula
 implemented in FAARFIELD 2.0 is:

 $k = 28.6926 \times CBR^{0.7788}$

where: CBR = E / 1500(*E* in psi, and *k* in psi/inch).

- Compared to the earlier formula:
 - Improved agreement with field correlations
 - less conservative when converting from CBR data.

FAARFIELD 2.0 conversion formula

Rigid Pavement Design Example

A rigid pavement is being designed for a new runway at a commercial airport in Dakar, Senegal. Based on the information obtained from the Airport Master Plan, the new runway is expected to handle the traffic mix presented in Table 1. Eight soil borings were performed for this project, the results of which are presented in Table 2. The specified 28-day strength (ASTM C78) is 4.27 MPa.

Table 1. Aircraft traffic mix for rigid pavement design example.

Aircraft	Departure Weight, kg	Arrival Weight, kg	Annual Departures
S-30	13,608	10,206	8000
Fokker F-100	44,452	34,019	6500
B737-300	62,822	52,163	5000
B767-300 ER	158,757	131,541	3200
A380-800	544,310	462,664	400
B777-300	263,083	237,682	1500

Same as flexible example!

Boring No.	UCSC Soil Type	Moisture Content, %	Optimal MC, %	Dry unit weight, kN/m ³	Water Table Depth, m	CBR, %
B-1	SC	12.2	10.4	20.26	3	10.6
B-2	SC	14.4	12.2	19.57	3	7.2
B-3	SC	16.5	9.6	20.80	2.5	8.4
B-4	CL	15.8	13.5	18.88	2.0	6.3
B-5	CL	17.0	14.5	19.24	2.4	4.8
B-6	CL	16.2	13.8	18.96	1.7	5.9
B-7	CL	16.8	12.6	19.48	1.4	4.2
B-8	CL	14.2	12.8	20.14	1.8	6.4
Average):					
Std. Deviation:						

Table 2. Soil boring results for rigid pavement design example.

24 October 2024 FAARFIELD 2.1 Design Examples

Examples

Rigid Pavement Design Example

1. What do the soil boring results tell us about the insitu soil properties? What subgrade support value do you recommend for design?

> Mean CBR - 6.7 Standard Deviation - 2.04 Design CBR - 4.7 $E_{SG} \sim 47$ MPa (5 CBR)

- 1. What type and thickness of base/subbase materials do you recommend? Are positive drainage features required?
- 2. What flexural strength of concrete would you use for the design?

AC 150/5320-6G allows 5 percent above specified 28day strength for design.

Given 28-day strength = 4.27 MPa, the allowable design strength is 1.05 × 4.27 = 4.48 MPa. Use 4.48 MPa in the FAARFIELD design.

1. Should the pavement be designed for aircraft arrival or departure weights? What is the required flexible pavement thickness for the runway? What is the most demanding aircraft?

24 October 2024

Boring No.	UCSC Soil Type	Moisture Content, %	Optimal MC, %	Dry unit weight, kN/m ³	Water Table Depth, m	CBR, %
B-1	SC	12.2	10.4	20.26	3	10.6
B-2	SC	14.4	12.2	19.57	3	7.2
B-3	SC	16.5	9.6	20.80	2.5	8.4
B-4	CL	15.8	13.5	18.88	2.0	6.3
B-5	CL	17.0	14.5	19.24	2.4	4.8
B-6	CL	16.2	13.8	18.96	1.7	5.9
B-7	CL	16.8	12.6	19.48	1.4	4.2
B-8	CL	14.2	12.8	20.14	1.8	6.4
Average	:	15.4	12.4	19.66	2.3	6.7
Std. Dev	viation:	1.7	1.7	0.68	0.6	2.0

FAARFIELD 2.1 Design Examples

Creating/Naming a Structure

Select Pavement Type

Creating Aircraft Traffic Mix

Modify Default Layer Properties

Modify Default Layer Properties

Modify Default Layer Properties

Run Pavement Thickness Design

PAARFELD 2.1.1 (Build 12/21/2023) Phew Job Copen Job Phew Structur Explorer New Job 1 Job Information Design Options	e Save Job e Save As Structure Structure Job Name: New Job	Save All 🗙 Close J	User Defined A	ircraft 🛨 Crea Design	te 🟦 Edit Bat	ch Run Selection	Status Gear S	DeSelect All	PAVEAIR Acces	5		 Cl thi W the Ri 	ick "Ru ickness hile the e clock gid des	n" to start pavemen s design. e design is running, will advance. signs take longer
Summary Report Structures New Structure 1	Structure Name: Rigid Example Pavement Layers Pavement Type: New	mple v Rigid	✓ Include	in Summary R	leport 🗌 Add	d To Batch	New Rigid of	Rigid Example :	started.			tha pa	an flexi itient!	ble designs. Be
Structure Report CDF Graph PCR Report PCR Graph Airport Master Record	Material > P-501 PCC Surface P-306 Lean Concrete P-209 Crushed Aggre	gate	Thickness (mm) 356 127 200	E (MPa) 27,579.04 4,826.33 167.17	k (MN/m^3	3) R (MPa) 4.80	Running Time	e: 00:01:05			L			Output file: No v
Kigid Example Structure Report CDF Graph PCR Report PCR Graph Airport Master Record	Subgrade	Sele	ect As The Design	47.00	25.3 Delete Selected	d Layer								Allow Flexible Computation for Thick Ves ~ Overlays on PCC Compute ACR for All Subgrade Categories
	The standard design life fo Results Calculated Life (Years):	r pavement struct	ure is 20 years (1	to 50 allowed). subgrade (mm)	k 683							•	Set as Program Default Initial Show/Hide Pavement Image
	Stored Aircraft Mix BKK	Example	v	Save Aircraft	Mix to File	Clear All	Aircraft from Lis	t Rem	iove Selected Air	craft from Structu	re Delete	Aircraft Mix File	• • ×	Change Pavement Graphics
	Airplane Name S-30	Gross Taxi Weight (kg) 13,608	Annual A Departures G 8.000 0	nnual rowth (%)	Total Departures 160,000	CDF Contribution 0	CDF Max for Airplane	P/C Ratio	Tire Pressure (kPa) 517.11	Percent GW on Gear 0.95	Tire Contact Width (mm) 312	Tire Contact Length (mm) 500	Tire Contact Area (mm²) 122.580	User Defined Aircraft Directory: C:\Users\David Brill\Documents \My FAARFIELD\User Defined
	Fokker-F-100 B737-300 B767-300 ER A380-800 WV000	44,452 62,822 158,757 544,310	6.500 0 5.000 0 3.200 0 400 0	-	130,000 100,000 64,000 8,000	0 0 0 0 0 0	0 0 0	0 0 0	1043.63 1370.99 1168.60 1455.74	0.95 0.95 0.95 0.38	281 291 355 372	450 466 568 596	99,204 106,724 158,205 174,171	Aircraft\ Change Aircraft Directory
Explorer	A380-800 WV000 Belly B777-300	544,310 263,083	400 0 1,500 0	1	8.000 30.000	0	0	0 0	1455.74 1298.75	0.57 0.95	372 354	596 566	174,171 157,264	Design Option: Notes User Information

Completed Pavement Thickness Design

CDF Chart

24 October 2024

FAARFIELD 2.1 Design Examples

Federal Aviation Administration

10000

Cumulative CDF

B777-300

B767-300 ER

B737-300

A380-800 WV000 Belly

Rigid Pavement Example – Results

1. What do the soil boring results tell us about the in situ soil properties? What subgrade support value do you recommend for design?

Mean CBR = 6.7 Standard Deviation = 2.04

Design CBR = 4.7

*E*_{SG} = 47 MPa

- 2. What type and thickness of base/subbase materials do you recommend? Are positive drainage features required?
- 3. What flexural strength of concrete would you use for the design?

AC 150/5320-6G allows 5 percent above specified 28-day strength for design.

Given 28-day strength = 4.27 MPa, the allowable design strength = 1.05 × 4.27 = 4.48 MPa.

Use R = 4.48 MPa in the FAARFIELD design.

4. Should the pavement be designed for aircraft arrival or departure weights? What is the required PCC slab thickness for the runway? What is the most demanding aircraft?

For the given inputs, FAARFIELD 2.1 gives a slab thickness 44 cm.

The most demanding aircraft is the Airbus 380-800, for which the belly gear (6-wheels) contributes 98% of the CDF on the critical strip.

Structure Report

PCR FAARFIELD 2.1.1 (Build 12/21/2023)

PCR

PCR

plorer 🔽 🔛	Structure Structure Report CDF Graph PCR Report PCR Graph Airport Master Record	×	Notes
ICAO_WACAF_ACR-PCR	Save As PDF		
Job Information			
Design Options	Enderal Aviation Administration EAAPEIELD 2.1 DCP Papart		
Summary Report	rederal Aviation Administration FAAKFIELD 2.1 FCK Report		
▲ Structures	FAARFIELD 2.1.1 (Build 12/21/2023)		
 Flexible Example 			
Structure Report			
CDF Graph	Job Name: ICAO_WACAF_ACR-PCR		
PCR Report	Structure: Rigid Example		
PCR Graph			
Airport Master Record	This file name = PCR Results for New Rigid 2024-10-23 16:55:01		
A Rigid Example	Evaluation pavement type is rigid and design program is FAARFIELD.		
CDE Graph	Structure name: Rigid Example in job file: ICAO WACAE ACR-PCR JOB yml		
PCP Report			
PCR Graph	Units = Metric		
Airport Master Record	Analysis Type: New Rigid		
	Subgrade Modulus =47.00MPa (Subgrade Category is D)		
	Evaluation Pavement Thickness = 763 mm		
	Pass to Traffic Cycle (PtoTC) Ratio = 1.00		
	Maximum number of wheels per gear = 6		
	CDF = 1.000		
Explorer 🖌 Aircraft 📾 Material		~	Notes User Information

- Detailed results can be viewed from <u>PCR</u> <u>Report</u>
 - Found in Navigation
 Pane

• PCR report includes:

- 1. Traffic Inputs
- 2. PCR Summary
- 3. ACR Summary

		Resul	ts Table 2. PCR Value		
No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (kg)	ACR Thick at max. MGW (mm)	PCR/R/D
1	A380-800 WV000	403	544,310	522	1098.8

	Res	ults Table 3.	New Rigid ACR at Indicated G	ross Weight ar	nd Strength	
No.	Aircraft Name	Gross Weight (kg)	Percent Gross Weight on Main Gear	Tire Pressure (MPa)	ACR Thick (mm) (D)	ACR/R/D
1	S-30	13,608	95	517.11	147	92.6
2	Fokker-F-100	44,452	95.6	1,043.63	279	315.4
3	B737-300	62,822	90.8	1,370.99	323	423.4
4	B767-300 ER	158,757	92.4	1,168.60	386	601.9
5	A380-800 WV000	544,310	95	1,455.74	523	1098.8
6	B777-300	263,083	94.8	1,298.75	470	893.9

ACR/PCR	Classification Rating
ACR Thickness	ACR Pavement Reference Thickness
MAGW	Aircraft Weight that Converts Total Equiv. Departures to CDF = 1.0
Total Equiv. Departures	Number of Departures for Critical Aircraft that provides same CDF as Aircraft Mix

No.	Aircraft Name	Critical aircraft Total equiv. departures	Max allowable Gross Weight of critical aircraft (kg)	ACR Thick at max. MGW (mm)	PCR/R/D
1	A380-800 WV000	403	544,310	522	1098.8

- Cumulative Damage Factor (CDF) is also reported in <u>PCR Report</u> summary
- <u>CDF Conditions:</u>
 - CDF ≤ 1.0 → ACR ≤ PCR for all aircraft
 - CDF > 1.0 → Operating restrictions necessary

Federal Aviation Administration FAARFIELD 2.1 PCR Report

FAARFIELD 2.1.1 (Build 12/21/2023)

 Job Name: ICAO_WACAF_ACR-PCR

 Structure: Rigid Example

 This file name = PCR Results for New Rigid 2024-10-23 16:55:01

 Evaluation pavement type is rigid and design program is FAARFIELD.

 Structure name: Rigid Example in job file: ICAO_WACAF_ACR-PCR.JOB.xml

 Units = Metric

 Analysis Type: New Rigid

 Subgrade Modulus =47.00MPa (Subgrade Category in D)

 Evaluation Pavement Thickness = 763 mm

 Pass to Traffic Cycle (PtoTC) Ratio = 1.00

 Maximum number of wheels per gear = 6

 CDF = 1.000

January 7, 2024

Overlay Design Example Using FAARFIELD 2.1

24 October 2024

FAARFIELD 2.1 Design Examples

FAARFIELD Overlay Design

• HMA Overlays on Flexible Pavement

 Same as designing a new flexible pavement, except the design layer is the HMA overlay.

PCC Overlays on Flexible Pavement

- Same principle as new rigid design.
- HMA Overlays on Rigid Pavement

PCC Overlays on Rigid Pavement

- More complex than new rigid pavement design.
- Both slabs (base PCC and overlay) deteriorate with applied traffic. Stresses are computed for both slabs.
- E-modulus of the base slab is a function of reduced SCI.

FAARFIELD Overlay Design –

PCC on Rigid Overlays

- Fully bonded overlays
 - Treat as a new rigid pavement design.
 - Thickness of overlay slab is $h_{overlay} = h_{design} h_{exist}$.
- Unbonded overlay
 - Bond breaker or leveling course is used.
- Partially bonded overlay
 - Not a standard design in AC 150/5320-6F.
 - Default in FAARFIELD is off.
 - May be enabled from the Options window, but displays a "Non Standard Structure" message.

FAARFIELD Overlay Design – HMA on Rigid Overlays

- See AC 150/5320-6G, Paragraphs 4.7.5.5 & 4.7.5.6
- Current design procedure does <u>not</u> address reflection cracking.
- Default model assumes base concrete pavement continues to deteriorate under traffic, reaching a terminal SCI at end of life.
- Thick asphalt overlays on existing rigid pavements.
 - Applies only when the overlay thickness exceeds the concrete thickness.
 - Can treat as a flexible design where the existing concrete acts as a high-quality base material.
 - Program performs both designs reports the one that gives the thinner overlay.

FAARFIELD Overlay Design Required Inputs

- Existing rigid pavement condition is characterized by the Structural Condition Index (SCI).
 - SCI derived from PCI as determined by ASTM D 5340, Airport Pavement Condition Index Surveys. AC 150/5320-6G, par. 4.7.5.3, gives guidance on SCI.
 - SCI is computed using only structural components from the PCI survey.
- SCI = 80 is the FAA definition of structural failure. This is equivalent to 50% of the slabs in a section exhibiting a full-width structural crack)
- For existing pavements with structural damage (SCI < 100)
 - The user inputs a value of SCI for the existing pavement.
 - The range of allowable values is SCI 67 100.
 - The Help file also gives approximate formulas for relating SCI to C_r and C_b factors in earlier FAA design methods.

FAARFIELD – PCC Unbonded Overlay Design Structural Condition Index (SCI)

Rigid Pavement Distress Types Used to Calculate SCI

Distress	Severity Level
Corner Break	Low, Medium, High
Longitudinal/Transverse/Diagonal Cracking	Low, Medium, High
Shattered Slab	Low, Medium, High
Shrinkage Cracks (cracking partial width of slab)*	Low
Spalling–Joint	Low, Medium, High

* Used only to describe a load-induced crack that extends only part of the way across a slab. The SCI does not include conventional shrinkage cracks due to curing or other non load-related problems.

Cumulative Damage Factor Used (CDFU)

For existing pavements where SCI=100 (no structural distress):

- There is no visible distress contributing to reduction in SCI (no structural distress types). However, some pavement life has been consumed by the applied traffic.
- The amount of pavement life consumed before the onset of cracking is the percent CDF Used (%CDFU).
- Need to estimate a value of %CDFU.
- The Help file gives guidance on estimating %CDFU using the Life key.

HMA on Rigid Overlay Example

- HMA overlay will be placed on an existing PCC slab
- Assume the previous traffic mix.
- Existing PCC slab:
 - Assume SCI = 67 for existing slab.
- All other design inputs same as previous example.

Create a New Structure

Explorer	Job Information Structure	Structure Repo	rt CDF Grap	h PCR Repo	rt PCR Grap	oh Airport Ma	aster Record	ł		×	Design Options	•
ICAO_WACAF_ACR-PCR lob Information	Structure								v	×	Calculate HMA CDF	No
Design Options	Job Name: ICAO_WA	CAF_ACR-PCR	PCR		~	Run	St	atus Gear Structur	re	A	Reduced Cross Sec	tion: No
Summary Report	Structure Name: Rigid Exa	mple	✓ Ir	nclude in Sum	mary Report	Add To Ba	atch F	PCR Calculation of Ri Run Time: 164 secon	igid Example ds	Co	neadeed cross see	
▲ Structures ▶ Flexible Example	Pavement Layers Pavement Type: New	v Riaid			v		F	PCR = 1100/R/D/W/	Г		Automatic flexible base design:	Yes
Rigid Example Copy Overlay Example Delete	Material	Material		(mm) E (N	1Pa) k ((MN/m^3) R	(D_)				Slab Stress Displaye	ed: No
Overload Paste	> P-501 PCC Surface		436	27,5	79.04	4.4	48				Output file:	No
7	P-306 Lean Concrete		127	4,82	6.33							
	P-209 Crushed Aggre	egate	200	167.	17						Units: Me	tric
oy/Paste "New Rigid"	•									•	Overlays on PCC Compute ACR for A	ll No
ction and rename	Traffic								•	×	Subgrade Categori	25
icture.	Stored Aircraft Mix ICAC	_ACR-PCR Wor	kshop ~	Save A	Aircraft Mix to	o File	Clear All Air	craft from List	Remove	Selecte	Show Advan	ced Options
	Airplane Name	Gross Taxi Weight (kg)	Annual Departures	Annual Growth (%)	Total Departures	CDF contributio	CDF M ons Airplar	lax for ne P/C Ratio	Tire Pressu (kPa)	re	Set as Program	Rosot Dofault
	S-30	13,608	8,000	0	160,000	0	0	6.33	517.11		Default	Initial
	Fokker-F-100	44,452	6,500	0	130,000	0	0	3.71	1043.63			
	B757-300 FR	62,822	3,000	0	64,000	0	0	3.88	1370.99		Chanad Bull D	and the second
	A380-800 WV000	544,310	400	0	8,000	0	0.09	3.83	1455.74		Show/Hide Pav	ement Image
	A380-800 W0/000 Belly	544 310	400	0	8,000	0.98	0.99	4.25	1455 74	•		
	•									•	Design Options No	atos - Usor Infi

Modify the Structure

Modify the Structure

G FAARFIELD 2.1.1 (Build 12/21/2023) G New Job Open Job Ower Structure	Save Job Save As Save All X Close Job User Defined Aircraft 🛓 Create 🏦 Edit Batch Run Selection 🕞 select All 🕞 DeSelect All 📲 PAVEAIR Access "Yes."
Explorer 💌	Job Information Structure Report CDF Graph PCR Report PCR Graph Airport Master Record 🗙 Design Options
▲ ICAO_WACAF_ACR-PCR	Structure Calculate HMA CDP No V
Job Information Design Options	Job Name: ICAO_WACAF_ACR-PCR Thickness Design v Run Status Gear Structure A Reduced Cross Section: No v
Summary Report Structures Flexible Example	Structure Name: Overlay Example Include in Summary Report Add To Batch Pavement Layers Automatic flexible base design: Yes
 Rigid Example Overlay Example 	Pavement Type: HMA Overlay on Rigid HMA Overlay on Rigid Slab Stress Displayed: No
 Overload 	-> P-401/P-403 HMA Overlay 305 1,378.95 0 P-501 PCC Surface 400 27570.04 448
	P-401/P-403 HMA Stabilized 127 2/75/30 Units: Metric P-209 Crushed Aggregate 152 517.11 Metric
	Subgrade 47.00 25.3 Allow Flexible Computation for Thick Yes V
	Select As The Design Layer Delete Selected Layer Compute ACR for All No ~
	Design Life (Years): 20 SCI: 67 Percent CDFU: 100 V Show Advanced Options
	Irranic Set as Program Stored Aircraft Mix ICAO_ACR-PCR Workshop v Save Aircraft Mix to File Clear All Aircraft from List Remove Selecte Default
	Airplane Name Gross Taxi Weight (kg) Annual Departures Total Growth (kg) CDF Departures CDF Max Contributions P/C Ratio Tire Pressure (kPa) Show/Hide Pavement Image
	S-30 13,608 8,000 0 160,000 0 0 0 517,11

Run Overlay Design

blorer	• 	Job Information Structure Structure Repor	t CDF Graph PCR	Report PCR Graph	Airport Master Reco	ord	×	Design Options	•
ICAO_WACAF_ACR-PCR		Structure					T X	Calculate HMA CD	F: No ~
Job Information		leh Nemer	Thickness	losian	D	Status Goar Structuro			
Design Options		ICAO_WACAF_ACR-PCR	Thickness L	vesigin v	Run	status Gear Structure		Reduced Cross Sec	tion: No v
Summary Report		Structure Name: Overlay Example	✓ Include i	n Summary Report	Add To Batch				
Elovible Evample		Pavement Layers						Automatic flexible base design:	Yes ~
Rigid Example		Pavement Type: HMA Overlay on Ri	gid	~	\			Ĵ	
Overlav Example			-					Slab Stress Display	ed: No ~
 Overload 		Material	Thickness (mm)	E (MPa) k (MP	N/m ³⁾ (MPa)				
		> P-401/P-403 HMA Overlay	305	1,378.95				Output file:	No ~
		P-501 PCC Surface	440	27,579.04	4.48				
		P-401/P-403 HMA Stabilized	127	517 11		lick "Run"		Units: M	etric ~
		Subgrade	152	47.00 25.3			┛╵║	Allow Flowible	
								Computation for T	hick Yes v
								Overlays on PCC	
		S	elect As The Design	Layer Delete Se	elected Layer			Compute ACR for A	All No ~
								Subgrade Categori	Ies
		Design Life (Years): 20 SCI: 6	57 Percent	CDFU: 100			T	Chann Arling	
		4					•	Show Advan	ced Options
		Traffic							
		iranic						Set as Program	Reset Default to
		Stored Aircraft Mix ICAO_ACR-PCR Work	kshop ~	Save Aircraft Mix to Fi	le Clear All /	Aircraft from List	Remove Selecte	Default	Initial
		Airplane Name Gross Taxi	Annual Annua	al Total	CDF CDF	Max P/C Ratio Ti	re Pressure		
		Weight (kg)	Departures Grow	th (%) Departures	Contributions for A	irplane (k	Pa)	Show/Hide Pa	vement Image
		S-30 13,608	8,000 0 6 500 0	160,000 (0 51	/.11		
	-2-1	•					•		

Design Complete

Run Overlay PCR Evaluation

plorer	•	Structure Structu	re Report CDF Graph P	CR Report	PCR Grap	h Airport M	aster Record			×	Design Options	
ICAO_WACAF_ACR-PCR		Structure								V . ×	Calculate HMA CD	F: No
Job Information		Structure										
Design Options		Job Name:	ICAO_WACAF_ACR-PCR	P	CR		× R	un S	Status Gear Structu	re	Reduced Cross Ser	ction: No
Summary Report		Structure Name:	Overlay Example	~	Include in	Summary Re	port Add 1	To Batch				
▲ Structures			orena,			-		r	7		Automatic flexible Yes Yes	
 Flexible Example 		Pavement Layers	;						\			
Structure Report CDF Graph		Pavement Type	HMA Overlay on Ki	igid		v			\mathbf{N}			N-
		Material		Thickne	es (mm)	F (MPa)	k (MN/mA3)	R	\		Slab Stress Display	/ed: No
PCR Report		Wateria		Theshe	55 (1111)	E (IVIFO)	K (IVII 4/III - J)	(MPa)				
PCR Graph		> P-401/P-4	03 HMA Overlay	100		1,378.95			Click	"Dun"	Output file:	No
Airport Master Record		P-501 PCC	Surface	356		27,579.04		4.48	CIICK	Run	_	
Rigid Example		P-401/P-4	U3 HMA Stabilized	127		2,757.90		_			Units: M	letric -
▲ Overlay Example		Subgrade	sned Aggregate	152	_	47.00	25.2					
Structure Report		Subgraue	1.00 2.5.5									Thick Yes
CDF Graph											Overlays on PCC	HICK I'ES
PCR Report				Coloct Ac Th	Design L		alata Calactad I	laver			Compute ACR for	
PCR Graph		(I		select As Th	le Design La	ayer	elete Selecteu i	Layer			Subgrade Categori	ies
Airport Master Record		Design Life (Yea	rs): 20 SCI:	75	Percent C	DFU: 100	P/TC Ratio	D: 1		•		
Overload		4								•	Show Advanced Options	
- Overload		Traffic								V P X		
		a 14 61		dark and	1 5							
		Stored Aircraft N	ICAO_ACK-PCK WOR	kshop ~	S	ave Aircraft N	fix to File	Clear All A	ircraft from List	Remove Selecte	Set as Program	Reset Default to
		Airplane Name	Gross Taxi Weight (kg)	Annual Departure	Annual es Growth	I Total h (%) Depar	tures CDF	CDF butions Airpl	Max for ane P/C Ratio	Tire Pressure (kPa)	Denan	Inda
		S-30	13,608	8,000	0	160,00	0 0	0	0	517.11	Show/Hide Pa	avement Image
		Fokker-F-100	44,452	6,500	0	130,00	0 0	0	0	1043.63		
		R727_200	62.822	5.000	0	100.00	0	0	0	1270.00		

Run Overlay PCR Evaluation

Thank You!

Acknowledgments:

FAA Airport Technology R&D Branch: James Layton, Branch Manager; Murphy Flynn, Airport Pavement Section Manager

FAA Airport Engineering Division: D'Lorah Small, Harold Honey, Jeff Crislip, Harold Muniz-Ruiz

ARA: Tim Parsons; Richard Speir; Dr. Ali Z. Ashtiani; Dr. Kairat Tuleubekov

navneet.garg@faa.gov

daniel.i.offenbacker@faa.gov

https://airporttech.tc.faa.gov

