

Universal Access Transceiver System Description

Chris Moody October 2000

Outline

- History
- UAT Description
 - System Overview
 - Some Details
- UAT Role in CNS Architecture and Transition
- Spectrum and Standards
- Summary Attributes

A Brief History of UAT

- Began around 1995 as part of larger CAASD IR&D initiative on broadcast data link
 - 6 prototype systems flown on small aircraft
 - ADS-B, TIS-B, and Wx uplink demonstrated
- Cargo Airlines incorporate UAT in their evaluation--UPS-AT develops UAT
- UAT becomes part of SF-21 Link Evaluation study
- UAT part of winning bid for FAA's Capstone program
- RTCA PMC approves establishment of UAT MOPS working group

UAT Overview

- Designed specifically for ADS-B with no constraints from legacy systems
- Simplicity and robustness were paramount design objectives
- Operates on a single common wideband channel
- 1 Mbps channel rate
- Capable of supporting multiple broadcast applications to foster early equipage

UAT: Broadcast Data Link Supporting ADS-B, TIS-B & FIS-B

Waveform Selection

- Requirements
 - Good capture effect
 - relatively efficient and low cost power amplifier
 - simple/robust decoder
- Binary FM with high modulation index chosen

Frequency Band Selection

ADS-B requires ARNS allocation--3 alternatives:

VHF: 108-118 MHz

L-band: 960-1215 MHz

C-band: 5000-5250 MHz

- Extremely difficult to assemble enough contiguous channels at VHF
- Propagation loss too high at C band
- 960-1215 MHz has channelization and current usage most compatible with UAT operation

UAT Media Access Approach

- Requirement: Simple and Robust logic for aircraft media access
- ADS-B transmissions occur based on pseudorandom selection of one of 3200 Message Start Opportunities (MSO)

ADS-B Message Format

- Each aircraft transmits exactly one message each second
- Standard Forward Error Correction (FEC) increases message robustness to noise and interference
- FEC plus Error Checking (CRC) combine for an extremely low undetected message error rate <10⁻¹⁰

State Vector Component of Every ADS-B Message

Byte #	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0							A23	A24 (LSB)
1	ICAO 24-Bit Aircraft Address							
2	A1 (MSB)	A2						
3	·		,					(LSB)
4	Latitude							
5	(Sign)							
6	·		,					(LSB)
7	Longitude							
8	(Sign)							
9	(MSB)	SB) NUC R			(MSB)	NUCP		(LSB)
10	N-S Velocity					(LSB)	1 PPS OK	H.Pos.OK
11			(LSB)	(Sign)				
12	(Sign) E-W Velocity							
13	Pressure Altitude							(LSB)
14	Pressi	ure Altitude	Rate	(LSB)	(MSB)			
15	Air/Groun	d State	Anon.	(sign)				

ADS-B Message Set and Transmission Schedule for Full Capability Participant

- State Vector + Call Sign
- State Vector + TCP + TCP+1
- State Vector + TCP + TCP+1
- State Vector +[future payload]
- One transmitted message every second--4 second message rotation

Independent ADS-B Report Validation: Aircraft Perspective

- ADS-B message payload includes the precise transmission time (MSO)
- Receiving aircraft UAT reports precise time of reception with decoded message payload
- Application can perform passive range verification of ADS-B reported position
- Preliminary UPSAT flight test data showed time-based slant range estimates to be within 0.2 nmi of that indicated by ADS-B

Independent ADS-B Report Validation: Ground ATC Perspective

- Single ground site can perform same range validation as aircraft
- Multiple networked sites allows position estimate based on differential burst arrival times at ground stations

Independent Position Estimate from Ground Messages

- Time slot and ground station location provided in each uplink message header
- Allows aircraft to derive independent position estimate
- Absolute time not required on aircraft
- Absolute time required at ground stations

Spectrum and Standards

- All experimental assignments to date have been at 966 MHz
- FAA shifting frequency to 981 MHz for future Capstone (for greater international viability)
- RTCA PMC go ahead for MOPS development
- ICAO AMCP WG C to consider SARPs development in their future work program

960-1215 MHz ARNS Band

Summary

- Intended for a dedicated channel--so capacity and performance limited mainly by system self interference
- Every ADS-B message has a complete State Vector
 - no tracking or message assembly required
 - no lat/lon decompression or ambiguity resolution required
 - no need to burden application with detection of transmission errors
- Full resolution position reporting
- Consistent operation in all flight domains
- No channel sensing required for tx--minimal tx-only implementations are viable
- No tuning procedures required to access full suite of broadcast services
- Simple, proven frequency modulation technique

Backup Material

Evaluation Unit Airborne Subsystem

UAT Spectrum (Measured)

Possible UAT Transition and Role in CNS Architecture

Considerations in Choosing UAT Frequency

- •Frequency should be below 1025 OR above 1150
 - •minimize cosite effects from airborne DME interrogators
 - avoid UAT interaction with ground DME transponders
- Avoid proximity to 1030 (TCAS) and L5 also for airborne cosite
- Minimize displacement of LOC assignments (more limited than VOR)
- •Low end of band preferable for best ADS-B air-air propagation

