# ACRP REPORT 50

AIRPORT COOPERATIVE RESEARCH PROGRAM

Sponsored by the Federal Aviation Administration

Improved Models for Risk Assessment of Runway Safety Areas



TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

#### ACRP OVERSIGHT COMMITTEE\*

#### CHAIR

James Wilding

Metropolitan Washington Airports Authority (retired)

#### VICE CHAIR

Jeff Hamiel Minneapolis–St. Paul Metropolitan Airports Commission

#### MEMBERS

**James Crites** Dallas–Fort Worth International Airport Richard de Neufville Massachusetts Institute of Technology Kevin C. Dolliole Unison Consulting John K. Duval Austin Commercial, LP Kitty Freidheim Freidheim Consulting Steve Grossman Jacksonville Aviation Authority Tom Jensen National Safe Skies Alliance Catherine M. Lang Federal Aviation Administration Gina Marie Lindsey Los Angeles World Airports Carolyn Motz Hagerstown Regional Airport Richard Tucker Huntsville International Airport

#### **EX OFFICIO MEMBERS**

Paula P. Hochstetler Airport Consultants Council Sabrina Johnson U.S. Environmental Protection Agency Richard Marchi Airports Council International—North America Laura McKee Air Transport Association of America Henry Ogrodzinski National Association of State Aviation Officials Melissa Sabatine American Association of Airport Executives Robert E. Skinner, Jr. Transportation Research Board

#### SECRETARY

**Christopher W. Jenks** *Transportation Research Board* 

#### **TRANSPORTATION RESEARCH BOARD 2011 EXECUTIVE COMMITTEE\***

#### OFFICERS

CHAIR: **Neil J. Pedersen**, *Administrator*, *Maryland State Highway Administration*, *Baltimore* VICE CHAIR: **Sandra Rosenbloom**, *Professor of Planning*, *University of Arizona*, *Tucson* EXECUTIVE DIRECTOR: **Robert E. Skinner**, **Jr.**, *Transportation Research Board* 

#### MEMBERS

J. Barry Barker, Executive Director, Transit Authority of River City, Louisville, KY Deborah H. Butler, Executive Vice President, Planning, and CIO, Norfolk Southern Corporation, Norfolk, VA William A.V. Clark, Professor, Department of Geography, University of California, Los Angeles Eugene A. Conti, Jr., Secretary of Transportation, North Carolina DOT, Raleigh James M. Crites, Executive Vice President of Operations, Dallas-Fort Worth International Airport, TX Paula J. Hammond, Secretary, Washington State DOT, Olympia Adib K. Kanafani, Cahill Professor of Civil Engineering, University of California, Berkeley Susan Martinovich, Director, Nevada DOT, Carson City Michael R. Morris, Director of Transportation, North Central Texas Council of Governments, Arlington Tracy L. Rosser, Vice President, Regional General Manager, Wal-Mart Stores, Inc., Mandeville, LA Steven T. Scalzo, Chief Operating Officer, Marine Resources Group, Seattle, WA Henry G. (Gerry) Schwartz, Jr., Chairman (retired), Jacobs/Sverdrup Civil, Inc., St. Louis, MO Beverly A. Scott, General Manager and CEO, Metropolitan Atlanta Rapid Transit Authority, Atlanta, GA David Seltzer, Principal, Mercator Advisors LLC, Philadelphia, PA Lawrence A. Selzer, President and CEO, The Conservation Fund, Arlington, VA Kumares C. Sinha, Olson Distinguished Professor of Civil Engineering, Purdue University, West Lafayette, IN Daniel Sperling, Professor of Civil Engineering and Environmental Science and Policy; Director, Institute of Transportation Studies; and Interim Director, Energy Efficiency Center, University of California, Davis Kirk T. Steudle, Director, Michigan DOT, Lansing Douglas W. Stotlar, President and CEO, Con-Way, Inc., Ann Arbor, MI C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin **EX OFFICIO MEMBERS** Peter H. Appel, Administrator, Research and Innovative Technology Administration, U.S.DOT J. Randolph Babbitt, Administrator, Federal Aviation Administration, U.S.DOT Rebecca M. Brewster, President and COO, American Transportation Research Institute, Smvrna, GA Anne S. Ferro, Administrator, Federal Motor Carrier Safety Administration, U.S.DOT John T. Gray, Senior Vice President, Policy and Economics, Association of American Railroads, Washington, DC John C. Horsley, Executive Director, American Association of State Highway and Transportation Officials, Washington, DC David T. Matsuda, Deputy Administrator, Maritime Administration, U.S.DOT Victor M. Mendez, Administrator, Federal Highway Administration, U.S.DOT William W. Millar, President, American Public Transportation Association, Washington, DC Tara O'Toole, Under Secretary for Science and Technology, U.S. Department of Homeland Security, Washington, DC Robert J. Papp (Adm., U.S. Coast Guard), Commandant, U.S. Coast Guard, U.S. Department of Homeland Security, Washington, DC Cynthia L. Quarterman, Administrator, Pipeline and Hazardous Materials Safety Administration, U.S.DOTPeter M. Rogoff, Administrator, Federal Transit Administration, U.S.DOT David L. Strickland, Administrator, National Highway Traffic Safety Administration, U.S.DOT Joseph C. Szabo, Administrator, Federal Railroad Administration, U.S.DOT Polly Trottenberg, Assistant Secretary for Transportation Policy, U.S.DOT Robert L. Van Antwerp (Lt. Gen., U.S. Army), Chief of Engineers and Commanding General, U.S. Army Corps of Engineers, Washington, DC Barry R. Wallerstein, Executive Officer, South Coast Air Quality Management District, Diamond Bar, CA

<sup>\*</sup>Membership as of March 2011.

## ACRP REPORT 50

## Improved Models for Risk Assessment of Runway Safety Areas

Manuel Ayres Jr. Hamid Shirazi Regis Carvalho Jim Hall Richard Speir Edith Arambula AppLied Research Associates, Inc. Elkridge, MD

**Robert David ROBERT E. DAVID & ASSOCIATES, INC.** Fredericksburg, VA

> Derek Wong London, UK

John Gadzinski Four Winds Consulting Virginia Beach, VA

Subscriber Categories Aviation • Safety and Human Factors

Research sponsored by the Federal Aviation Administration

#### **TRANSPORTATION RESEARCH BOARD**

WASHINGTON, D.C. 2011 www.TRB.org

#### AIRPORT COOPERATIVE RESEARCH PROGRAM

Airports are vital national resources. They serve a key role in transportation of people and goods and in regional, national, and international commerce. They are where the nation's aviation system connects with other modes of transportation and where federal responsibility for managing and regulating air traffic operations intersects with the role of state and local governments that own and operate most airports. Research is necessary to solve common operating problems, to adapt appropriate new technologies from other industries, and to introduce innovations into the airport industry. The Airport Cooperative Research Program (ACRP) serves as one of the principal means by which the airport industry can develop innovative near-term solutions to meet demands placed on it.

The need for ACRP was identified in *TRB Special Report 272: Airport Research Needs: Cooperative Solutions* in 2003, based on a study sponsored by the Federal Aviation Administration (FAA). The ACRP carries out applied research on problems that are shared by airport operating agencies and are not being adequately addressed by existing federal research programs. It is modeled after the successful National Cooperative Highway Research Program and Transit Cooperative Research Program. The ACRP undertakes research and other technical activities in a variety of airport subject areas, including design, construction, maintenance, operations, safety, security, policy, planning, human resources, and administration. The ACRP provides a forum where airport operators can cooperatively address common operational problems.

The ACRP was authorized in December 2003 as part of the Vision 100-Century of Aviation Reauthorization Act. The primary participants in the ACRP are (1) an independent governing board, the ACRP Oversight Committee (AOC), appointed by the Secretary of the U.S. Department of Transportation with representation from airport operating agencies, other stakeholders, and relevant industry organizations such as the Airports Council International-North America (ACI-NA), the American Association of Airport Executives (AAAE), the National Association of State Aviation Officials (NASAO), and the Air Transport Association (ATA) as vital links to the airport community; (2) the TRB as program manager and secretariat for the governing board; and (3) the FAA as program sponsor. In October 2005, the FAA executed a contract with the National Academies formally initiating the program.

The ACRP benefits from the cooperation and participation of airport professionals, air carriers, shippers, state and local government officials, equipment and service suppliers, other airport users, and research organizations. Each of these participants has different interests and responsibilities, and each is an integral part of this cooperative research effort.

Research problem statements for the ACRP are solicited periodically but may be submitted to the TRB by anyone at any time. It is the responsibility of the AOC to formulate the research program by identifying the highest priority projects and defining funding levels and expected products.

Once selected, each ACRP project is assigned to an expert panel, appointed by the TRB. Panels include experienced practitioners and research specialists; heavy emphasis is placed on including airport professionals, the intended users of the research products. The panels prepare project statements (requests for proposals), select contractors, and provide technical guidance and counsel throughout the life of the project. The process for developing research problem statements and selecting research agencies has been used by TRB in managing cooperative research programs since 1962. As in other TRB activities, ACRP project panels serve voluntarily without compensation.

Primary emphasis is placed on disseminating ACRP results to the intended end-users of the research: airport operating agencies, service providers, and suppliers. The ACRP produces a series of research reports for use by airport operators, local agencies, the FAA, and other interested parties, and industry associations may arrange for workshops, training aids, field visits, and other activities to ensure that results are implemented by airport-industry practitioners.

#### **ACRP REPORT 50**

Project 04-08 ISSN 1935-9802 ISBN 978-0-309-21321-9 Library of Congress Control Number 2011928921

© 2011 National Academy of Sciences. All rights reserved.

#### **COPYRIGHT INFORMATION**

Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein.

Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB or FAA endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP.

#### NOTICE

The project that is the subject of this report was a part of the Airport Cooperative Research Program, conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council.

The members of the technical panel selected to monitor this project and to review this report were chosen for their special competencies and with regard for appropriate balance. The report was reviewed by the technical panel and accepted for publication according to procedures established and overseen by the Transportation Research Board and approved by the Governing Board of the National Research Council.

The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research and are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors.

The Transportation Research Board of the National Academies, the National Research Council, and the sponsors of the Airport Cooperative Research Program do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of the report.

Published reports of the

#### **AIRPORT COOPERATIVE RESEARCH PROGRAM**

are available from:

Transportation Research Board Business Office 500 Fifth Street, NW Washington, DC 20001

and can be ordered through the Internet at http://www.national-academies.org/trb/bookstore

Printed in the United States of America

## THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

The **National Academy of Sciences** is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The **National Academy of Engineering** was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering.

The **Institute of Medicine** was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The **National Research Council** was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council.

The **Transportation Research Board** is one of six major divisions of the National Research Council. The mission of the Transportation Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board's varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. **www.TRB.org** 

#### www.national-academies.org

## COOPERATIVE RESEARCH PROGRAMS

#### **CRP STAFF FOR ACRP REPORT 50**

Christopher W. Jenks, Director, Cooperative Research Programs Crawford F. Jencks, Deputy Director, Cooperative Research Programs Michael R. Salamone, ACRP Manager Theresia H. Schatz, Senior Program Officer Joseph J. Brown-Snell, Program Associate Eileen P. Delaney, Director of Publications Margaret B. Hagood, Editor

#### ACRP PROJECT 04-08 PANEL Field of Safety

Dana L. Ryan, St. Louis Airport Authority, St. Louis, MO (Chair) Steven G. Benson, Coffman Associates, Lee Summitt, MO Diana S. Dolezal, Greater Toronto Airports Authority, Toronto, ON Alex M. Kashani, Metropolitan Washington Airports Authority, Washington, DC Deborah T. Marino, Titusville–Cocoa Airport Authority, Titusville, FL Phillip C. Miller, California DOT, Sacramento, CA Xiaosong "Sean" Xiao, Xcel Energy, Minneapolis, MN Michel Hovan, FAA Liaison Matthew J. Griffin, Airports Council International–North America Liaison Richard Pain, TRB Liaison

#### **AUTHOR ACKNOWLEDGMENTS**

The research reported herein was performed under ACRP Project 4-08 by Applied Research Associates Inc. (ARA), Robert E. David & Associates, Inc. (RED), Dr. Derek Wong, and Mr. John Gadzinski. ARA was the prime contractor for this study, with RED, Dr. Wong and Four Winds Consulting serving as sub-consultants.

Dr. Manuel Ayres, Principal Engineer at ARA, was the Principal Investigator; Mr. Hamid Shirazi, P.E., Project Engineer at ARA, was the Project Manager, and Mr. Richard Speir, ARA Mid-Atlantic Division Manager, served as Co-Principal Investigator. The other authors of this report are Mr. Regis Carvalho (ARA), Mr. Robert David (RED), Dr. Derek Wong, Consultant, Dr. Jim Hall, Mr. John Gadzinski (Four Winds), and Ms. Edith Arambula (ARA).

The authors are very grateful for the guidance and help provided by the ACRP Panel for ACRP 4-08.

A very important contribution to this study was provided by MITRE Corporation. They made available their comprehensive database of accidents, and it significantly improved the availability of information to develop the risk models presented in this study. The research team is particularly grateful to Mr. Wallace Feerrar and Mr. John LeBron, who kindly made the information available. The research team is also very grateful for the participation of eight volunteers listed in Appendix G to test the analysis software, and for the courtesy of Mr. Luis Rosa to authorize the use of his photos.

### FOREWORD

#### By Theresia H. Schatz Staff Officer Transportation Research Board

ACRP Report 50: Improved Models for Risk Assessment of Runway Safety Areas expands on the research presented in ACRP Report 3: Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas to include the analysis of aircraft veer-offs, the use of declared distances, the implementation of the Engineered Material Arresting System (EMAS) and the incorporation of a risk approach for consideration of obstacles in or in the vicinity of the RSA. A user-friendly risk analysis tool is provided for airport and industry stakeholders to quantify risk and support planning and engineering decisions when determining RSA requirements to meet an acceptable level of safety for various types and sizes of airports. The tool is interactive and versatile to help users determine the risk based on various input parameters.

Current standards for RSAs are fairly rigid because they depend only on the type and size of aircraft using the runway. However, numerous factors affecting operations may lead to aircraft overruns, undershoots, and veer-offs. In many instances, standard RSAs are not feasible because of constraints, such as obstacles or land unavailability. In such cases, it is essential that alternatives be evaluated to minimize risk, to the extent practicable, in relation to site-specific conditions. For example, depending on the type of operation, the relationship between actual runway distance required and the actual runway distance available for both landing and takeoff can significantly affect the risk.

An approach for risk assessment of RSAs has been developed under ACRP Report 3: Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas. ACRP Report 3 provides a risk-based assessment that is rational and accounts for the variability of several risk factors associated with aircraft overruns and undershoots. The findings in ACRP Report 3 are the basis for further research to quantify and assess risk in the RSA environment. Understanding this level of risk under a given set of conditions is essential to address RSA enhancement opportunities.

ACRP Report 50 contains an analysis tool on the accompanying CD. The user guide to the analysis tool is in Appendix I of the report and is also on the CD and software help file. In addition, a presentation documenting the research method has been posted on the project web page, under ACRP Project 04-08. This research effort was conducted by Applied Research Associates, Inc. as the prime contractor, with Dr. Manuel Ayres serving as Principal Investigator, and Robert E. David & Associates and Four Winds Consulting as sub-consultants.

## CONTENTS

| 1        | Summary                                                               |
|----------|-----------------------------------------------------------------------|
| 3        | Chapter 1 Background                                                  |
| 3        | Introduction                                                          |
| 4        | Project Goals                                                         |
| 4        | RSA Improvement Alternatives                                          |
| 7        | Chapter 2 Research Approach                                           |
| 7        | Functional Hazard Analysis                                            |
| 8        | Accident and Incident Data                                            |
| 12<br>12 | Normal Operations Data<br>Aircraft Data                               |
|          |                                                                       |
| 13       | Chapter 3 Modeling RSA Risk                                           |
| 13       | Event Probability (Frequency Model)<br>Event Location Models          |
| 15<br>18 | EMAS Deceleration Model                                               |
| 22       | Accuracy of Models                                                    |
| 23       | <b>Chapter 4</b> Consequence Approach                                 |
| 23       | Modeling Approach for Risk                                            |
| 25       | Implementation of Approach                                            |
| 27       | Additional Simplifications                                            |
| 28       | Chapter 5 Analysis Software                                           |
| 28       | Overview                                                              |
| 28       | Software Capabilities                                                 |
| 28       | Input Data                                                            |
| 30       | Output and Interpretation                                             |
| 31       | Software Field Test                                                   |
| 32       | Chapter 6 Model Validation                                            |
| 34       | Validation of Frequency Models                                        |
| 35       | Validation of Risk Model                                              |
| 37       | <b>Chapter 7</b> Conclusions and Recommendations for Further Research |
| 37       | Major Achievements                                                    |
| 38       | Limitations                                                           |
| 39       | Recommendations for Future Work                                       |
| 40       | References                                                            |
| 41       | Abbreviations and Acronyms                                            |
| 43       | Definitions                                                           |

- A-1 Appendix A Functional Hazard Analysis Results
- B-1 Appendix B Summary of Accidents and Incidents
- C-1 Appendix C Sample of Normal Operations Data
- D-1 Appendix D Aircraft Database Summary
- E-1 Appendix E EMAS
- F-1 Appendix F Risk Criteria Used by the FAA
- G-1 Appendix G Plan to Field Test Software Tool
- H-1 Appendix H Summary of Results for Software/Model Tests
- I-1 Appendix I Software User's Guide

Note: Many of the photographs, figures, and tables in this report have been converted from color to grayscale for printing. The electronic version of the report (posted on the Web at www.trb.org) retains the color versions.

### SUMMARY

# Improved Models for Risk Assessment of Runway Safety Areas

The objective of this research project was to develop and validate a user-friendly software analysis tool that can be used by airport and industry stakeholders to quantify risk and support planning and engineering decisions when determining runway safety area (RSA) requirements to meet an acceptable level of safety for various types and sizes of airports.

The underlying basis was the approach presented in ACRP Report 3: Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas. The improved models and methodology provided by this research effort provide the capability to evaluate declared distances and the use of engineered material arresting system (EMAS), as well as the ability to consider the effects of obstacles inside or in the vicinity of the RSA.

The RSA is intended to prevent the following five types of events from becoming an accident: landing overruns, landing undershoots, landing veer-offs, takeoff overruns and takeoff veer-offs. The risk analysis for each type of event is threefold and considers probability (aka frequency), location, and consequence. The models for probability and location are specific for the event type, while the model for consequences is applicable to all five event types.

The models are based on evidence from worldwide accidents and incidents that occurred during the past 27 years. The analysis utilizes historical data from the specific airport and allows the user to take into consideration specific operational conditions to which movements are subject, as well as the actual or planned RSA conditions in terms of dimensions, configuration, type of terrain, and boundaries defined by existing obstacles.

The combined estimates for the probability model and location model provide an estimate that the event will take place and that the aircraft will stop or touch down beyond a certain distance from the runway area or strike an existing obstacle at a given speed. Using these estimates for the distances defined by the RSA bounds or by existing obstacles, it is possible to estimate the risk of accidents.

User-friendly software was developed and tested to help with the analysis. Input data to the analysis includes historical information on operations and weather and the definition of the RSA conditions and obstacles. The computer program runs a simulation to assess the risk for each historical operation and outputs average risk levels and probability distributions for each type of incident and each RSA section challenged by the operations. Results help the user identify areas of higher risk as well as compare different RSA alternatives.

Finally, the models developed in this research were validated using actual data for a sample of eight airports. The analysis results using actual data for these airports were compared to actual accident and incident rates over the past 25 years for each of these airports. The objective of this validation effort was to gain industry confidence on using the new methodology and software tool.

The outcome of this project is an RSA analysis tool that may benefit airport planners and engineers and that can be used to support safety risk assessments and actions. The approach

used and the software developed can be applied to evaluate any type of RSA improvement, including extending the RSA, using declared distances, and using EMAS, In addition, it is possible to analyze irregular RSA shapes and to consider the type of terrain and the presence of obstacles inside or in the vicinity of the RSA.

The RSA analysis tool should be used only for planning purposes rather than to evaluate risk for real-time conditions or individual operations. In addition, the data used to develop the risk models included only multi-engine aircraft with maximum takeoff weight (MTOW) higher than 5,600 lb. The approach for consequences incorporated in the analysis was based solely on engineering judgment, rather than crashworthiness data.

ACRP makes no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability of any particular purpose of the information or the data contained in the program. The software tool should be used by airport professionals who are familiar with and qualified to perform RSA analysis.

# CHAPTER 1

## Background

#### Introduction

Landing and takeoff overruns, landing undershoots, and landing and takeoff veer-offs account for most of the accidents that occur on or in the immediate vicinity of the runway. Accident statistics show that, from 1959 to 2009, 55% of the world's jet fatal aircraft accidents occurred during landing and takeoff phases of the flight and accounted for 51% of all onboard fatalities (Boeing 2010). Although in many cases the causal factors involve some type of human error, the conditions at the airport may contribute significantly to the probability and severity of the accidents.

The runway safety area (RSA) is a graded and obstacle-free rectangular-shaped area surrounding the runway that "should be capable, under normal (dry) conditions, of supporting airplanes without causing structural damage to airplanes or injury to their occupants" (AC 150/5300-13 1989). The RSA improves the safety of airplanes that undershoot, overrun, or veer off the runway and has helped turn potential accidents into minor incidents.

The rectangular dimensions of the RSA have changed over the years and depend on the category of aircraft using the runway. In the 1960s, in an attempt to mitigate the severity of aircraft accidents, the FAA revised the airport standards for RSA. The FAA RSA standard for most runways serving 14 CFR Part 121 air carrier operations is an area that is 500 feet wide centered on the runway and extends 1000 feet beyond each end of the runway.

Because many airports were built before the 1960s, when RSA dimension standards were smaller, some airports were not complying with the new dimensions. In 1999, the FAA released Order 5200-8 and embarked upon a major effort to upgrade safety areas that do not meet the current standards. The goal is to have all possible improvements for Part 139 airports completed by 2015. However, it is not practical for some airports to extend their current RSA dimensions to meet the standards because they are landlocked or face insurmountable challenges due to terrain or environmental restrictions such as wetlands.

More recently, the introduction of Engineered Material Arresting Systems (EMASs) has provided an alternative to achieve safety levels similar to those provided by the standards, but using only 60% of the area. Another alternative that has been used worldwide is the use of declared distances. For either of these alternatives there were no tools to help assess the true safety benefits associated with the solution selected.

The study presented in *ACRP Report 3* introduced a methodology for risk assessment of RSAs that has been used to evaluate RSA alternatives by the industry. However, the methodology cannot be used to evaluate the use of EMAS, declared distances, or safety areas for veer-off incidents. Moreover, the analysis is complex and only prototype software was developed under that study.

This report is organized into seven chapters. This first chapter provides the background and the objectives of the study, as well as the basic alternatives used by the industry to improve RSAs. The second chapter describes the five major types of incidents included in the analysis with major causes and contributing factors. Moreover the chapter presents the data used for the modeling process.

Chapter three explains the three-part approach to model each type of incident. Also it presents the probability and location models developed in this study and incorporated in the approach. The next chapter describes the consequence approach and how it was implemented.

The approach and the models developed in this study were incorporated into RSA analysis software named Runway Safety Area Risk Analysis (RSARA). Chapter 5 describes the software, and the required input and output information. Both the software and the models were validated using a sample of airports and their historical records for accidents and incidents to run the analysis and compare actual and predicted incident and accident rates. The results for validating the analysis are presented in Chapter 6. Finally, Chapter 7 describes the major conclusions and recommendations from this study. It also explains major achievements and limitations.

#### **Project Goals**

The ultimate objective of this research was to develop a risk assessment tool that can be used to evaluate alternatives for RSA improvements, with a capability to account for the use of EMAS, declared distances, the presence of obstacles, specific operations, weather, and runway conditions.

New models were developed, and the capability to evaluate risk for veer-off events was added to the approach presented in *ACRP Report 3*. Five sets of models were developed in this study: landing overruns, landing veer-offs, landing undershoots, takeoff veer-offs, and takeoff overruns. Each set includes three models: incident frequency, stop/touchdown location, and consequences.

The following were the specific goals that were achieved for ACRP Project 4-08:

- 1. Update the *ACRP Report 3* accident/incident database to incorporate aircraft overrun and undershoot accidents and incidents occurring after 2006.
- 2. Collect data on aircraft runway veer-off accidents and incidents and integrate these data into the existing database.
- 3. Develop risk models for frequency and location for each type of incident: landing overruns (LDOR); landing undershoots (LDUS); landing veer-offs (LDVO), takeoff overruns (TOOR), and takeoff veer-offs (TOVO).
- 4. Develop a practical approach to assess the impact of runway distance available on the probability of overruns, undershoots, and veer-offs.
- 5. Develop a practical approach to assess risk and the impact of using EMAS as an alternative to standard RSAs, or to use declared distances and evaluate the safety impact of reduced runway distance available.
- 6. Develop a practical approach to model incident consequences based on existing conditions and the presence of obstacles inside or in the vicinity of the RSA.
- 7. Develop user-friendly software that incorporates the methodology and models developed as a practical tool that airport stakeholders may use to evaluate RSA alternatives.
- 8. Field test the software developed.
- 9. Validate the new tool based on data gathered according to an airport survey plan.

#### **RSA Improvement Alternatives**

#### **General Considerations**

To facilitate understanding the role of an RSA, it can be divided into three sections as a function of the types of incidents that may occur in those locations. Two of those sections are located on each runway end and include the RSA portion immediately before the arrival thresholds and beyond the departure end of the runway. These are the sections that help mitigate consequences of aircraft overruns and undershoots. The third RSA section is lateral to the runway and extends over the runway length on both sides of the runway. This is the area that can help mitigate the severity of aircraft veer-off incidents.

For the RSA sections located laterally to the runway, improvements can be made by removing obstacles and preparing the area according to RSA standards to increase the runway object free area (ROFA) width. In some cases this may be necessary to introduce the operation of larger aircraft to increase capacity; however, they may be restrained to increase the existing runway separation distances to accommodate the larger airplane design group (ADG).

There are four basic alternatives available to improve an RSA when it does not meet the standards:

- Extend the RSA laterally and longitudinally.
- Modify or relocate the runway to expand the RSA.
- Implement declared distances by reducing the available runway distances and extending the RSA section adjacent to the runway ends.
- Use arresting systems to obtain a level of safety similar to that provided by the standard RSA.

Any combination of such alternatives is also possible, and the methodology presented in this report has the capability to analyze any such combinations. Each of these alternatives has advantages and disadvantages that are specific to each situation and that need to be assessed, as described in ensuing sections of this report.

It is important to note that airport operators can take additional actions to mitigate the probability of aircraft overruns, undershoots, and veer-offs. Some possible alternatives may include the following:

- Improve skid resistance and reduce undulations of runway surface.
- Monitor runway friction level to determine need to close the runway (e.g., ice conditions) and time for maintenance (e.g., rubber removal).
- Ensure accurate weather information and runway surface conditions are available to flight crews.
- Improve airport capability to detect unusual weather conditions (e.g., wind shear).
- Minimize the presence of obstacles in the vicinity of RSAs.
- Upgrade visual and instrument landing aids to improve accuracy of approach path.
- Coordinate operational restrictions with airlines and air traffic control (ATC) when adverse weather conditions arise.

• Publish RSA provision in the Aeronautical Information Publication when RSA's cannot comply with standards.

Although these actions can decrease the probability of undesirable events, it is not possible to measure the impact of these risk mitigation actions on the total airport risk of serious aircraft overruns, undershoots, and veer-offs.

This study introduces a risk-based methodology for quantitative evaluation of any of the alternatives or combinations of RSA improvement alternatives identified in FAA Order 5200.8 (1999). These alternatives are described below.

#### **Extend the RSA**

An example of extending the RSA is shown in Figure 1. In this case, the RSA adjacent to the right runway end and the lateral area originally did not comply with the standard.

This is a straightforward solution to improve an RSA and is used to extend it to the runway ends or the lateral sections. However, this alternative is not always feasible due to physical, environmental, or other constraints involved with implementation.

#### Modify or Relocate the Runway

In Figure 2, the runway was relocated to the left to obtain a standard RSA of 1000 ft in length. The relocation also may involve the change of runway direction.

Similar to the previous alternative, this solution may involve very high costs, particularly if changing the runway direction is necessary. In this case, a new runway must be constructed to replace the existing one. For the example shown, to keep the distance available for landing, it is necessary to extend the runway to the left.

#### **Implement Declared Distances**

Declared distances are a means of obtaining a standard safety area by reducing the usable runway length. When the RSA cannot be extended or the runway relocated, it may be



Figure 2. Relocating the runway.

necessary to implement declared distances to accommodate a larger RSA. Figure 3 shows an example to extend the RSA using this alternative.

This is a fast and low cost alternative for the airport operator; however, it may impact airport capacity, reduce payloads, and/or degrade the level of safety under specific situations, which may lead to long-term consequences to the airport. In the example provided, the runway was reduced to accommodate a larger RSA by reducing the landing distance available.

#### Use of Arresting Systems

When a full RSA cannot be achieved, the airport may use a bed of lightweight concrete that is crushed under the wheels of a stray aircraft, causing energy from its forward motion to be absorbed, to bring the aircraft to a stop within a shorter distance. A standard EMAS bed can reduce what would normally be a 1000-ft RSA to 600 ft, or even less if the land is not available, depending upon the aircraft types using the runway. Figure 4 presents an example of RSA improvement using EMAS.

This is an alternative that only became available in recent years and provides a feasible solution, particularly for landlocked runways. The major disadvantages are the high initial cost, maintenance costs, the need to replace the bed when used, the need to periodically replace the bed due to natural deterioration, and it still requires some land area to be available for installation.

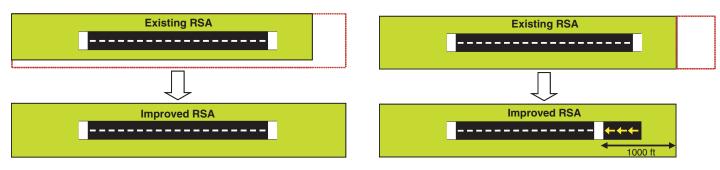
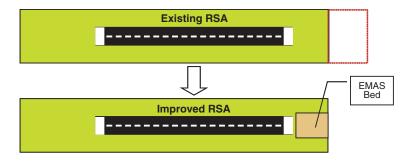




Figure 1. Extending the RSA.

Figure 3. Using declared distances.





## CHAPTER 2

## **Research Approach**

The development of this study included 11 tasks. These steps are illustrated in Figure 5.

The project started with a kick-off meeting and collection of updated information, particularly to review the literature associated with runway veer-off incidents, which was not part of the previous ACRP study. Following the literature review, the research team collected information to develop the risk models, including accident and incident information, aircraft data to build a criticality factor into the frequency models, as well as complementing the normal operations data (NOD) for general aviation (GA) flights of aircraft with MTOW below 12,000 lb.

Three parallel tasks were carried out after the model data were completed and reviewed: the development of risk models for aircraft overruns, veer-offs, and undershoots; the development of a test plan to validate the approach, the models, and the analysis software; and the development of a software outline to present to the panel. An interim report was prepared and submitted to the panel for discussion during the interim meeting.

Following the meeting, the research team pursued tasks on two fronts. The first was the development, testing, and review of the analysis software, and the second consisted of the preparation of data and actions to validate the study.

The approved software framework was implemented using Microsoft .Net and Microsoft Office tools (Excel and Access), and a user manual was developed. Eight industry volunteers were selected to test the beta version and provide comments to enhance the solution and eliminate bugs. In parallel, the software team conducted tests to identify and eliminate bugs. A revised version of the software was used to run the analysis for airports selected for validation.

Eight airports were selected to run the analyses for validation. Accident and incident data for these airports, as well as operations and weather information covering 1 year, were collected. The risk estimates were then compared to the actual accident and incident rates for the airports. The research tasks, the models, and the results are summarized in this report, the last task in this study.

#### **Functional Hazard Analysis**

As part of the literature review for this project, the research team reviewed information on operational experience to develop a functional hazard analysis (FHA) for the types of incidents relevant to this study. A similar analysis conducted by Eddowes et al. (2001) was used for overruns and undershoots in the *ACRP Report 3* study, and a summary is presented in Appendix A.

An FHA is a formal and systematic process for the identification of hazards associated with an activity. The purpose of the FHA was to determine relevant causal and contributing factors of veer-off, overrun, and undershoot accidents and hazards to aircraft associated with aerodrome operations and the physical design of airfields.

Overrun, veer-off, and undershoot incidents may be considered in terms of the deviation of the aircraft from its intended path. The definition of the deviation for each incident type may be summarized as follows:

- For overrun incidents, the "longitudinal deviation" is described by the longitudinal distance traveled beyond the expected accelerate/stop distance (for takeoff events) and beyond the landing distance available (for landing events).
- For veer-off incidents, the "lateral deviation" is described by the lateral distance traveled from the runway longitudinal edge.
- For undershoot incidents, the "longitudinal deviation" is described by the longitudinal distance from the point where the aircraft actually touched down to the runway threshold.
- For both overrun and undershoot events, the "lateral deviation" is the lateral distance to the extended runway centerline.

The identification of factors associated with aircraft overruns, undershoots, and veer-off was an important step prior to collection of accident and incident data, as this information was required to develop the risk models presented in this study.

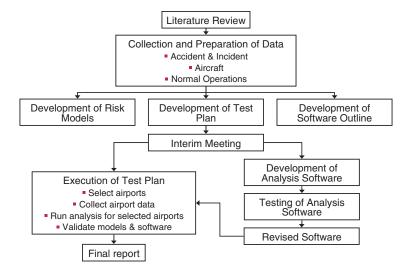



Figure 5. Study tasks.

#### **Accident and Incident Data**

Accident and incident data were collected from the following sources:

- FAA Accident/Incident Data System (AIDS).
- FAA/National Aeronautics & Space Administration (NASA) Aviation Safety Reporting System (ASRS).
- National Transportation Safety Board (NTSB) Accident Database & Synopses.
- MITRE Corporation Runway Excursion Events Database V.4 (2008).
- Transportation Safety Board of Canada (TSB).
- International Civil Aviation Organization (ICAO) Accident/ Incident Data Reporting (ADREP) system.
- Australian Transport Safety Bureau (ATSB).
- Bureau d'Enquêtes et d'Analyses pour la Sécurité de l'Aviation Civile (BEA).
- UK Air Accidents Investigation Branch (AAIB).
- New Zealand Transport Accident Investigation Commission (TAIC).
- Air Accident Investigation Bureau of Singapore.
- Ireland Air Accident Investigation Unit (AAIU).
- Spain Comisión de Investigación de Accidentes e Incidentes de Aviación Civil (CIAIAC).
- Indonesia National Transportation Safety Committee (NTSC).
- Netherlands Aviation Safety Board (NASB).

More than 260,000 aviation accident and incident reports were screened from 11 countries to identify the cases relevant to this study. Out of those, more than 140,000 events were screened from U.S. databases. The relevant events were filtered prior to gathering data from each report.

A list of accidents and incidents containing the cases used for model development is presented in Appendix B of this report. The list includes the accidents that occurred within 2000 ft of the runway ends and within 1000 ft of the runway centerline. The criteria represents the area where the overwhelming majority of runway excursions and undershoots occur and are similar to those used in *ACRP Report 3* and by the FAA (David 1990). Using such criteria, 1414 accidents and incidents were identified to provide the information used to develop the frequency and location models. Events that took place since 1980 and for which reports were available were included in the database.

Part of the data used to develop the frequency models was complemented from other sources of information, particularly for aircraft, airport, and meteorological conditions. For example, in some cases the weather information during the incident was missing and the actual METAR for the airport was obtained. In other situations, the runway used was missing and the FAA Enhanced Traffic Management System Performance Metrics (ASPM) was consulted.

#### Filter Applied to the Data

Criteria for filtering data were established to make the events comparable. The first filter was an attempt to use information from only specific regions of the world having accident rates that are comparable to the U.S. rate. This information was combined with U.S. data to develop the location models. For the frequency models, only U.S. data were used because comprehensive incident records are only available in the United States. The criteria used are shown in Table 1.

The accident and incident database was organized in Microsoft Access. The *ACRP Report 3* database was modified to simplify its use. The system provides the software tools needed to utilize the data in a flexible manner and includes the capability to add, modify, or delete data from the database, make queries about the data stored in the database, and produce reports summarizing selected contents. Figure 6 shows the database organization.

| -        |                                                                                                                   |                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filter # | Description                                                                                                       | Justification                                                                                                                                          |
| 1        | Remove non-fixed wing aircraft entries                                                                            | Study is concerned with fixed wing aircraft                                                                                                            |
|          |                                                                                                                   | accidents and incidents only                                                                                                                           |
| 2        | Remove entries for airplanes with                                                                                 | Cut off criteria to maintain comparable level of pilot                                                                                                 |
|          | certified max gross weight < 6,000 lbs                                                                            | qualifications and aircraft performance to increase                                                                                                    |
|          |                                                                                                                   | the validity of the modeling                                                                                                                           |
| 3        | Remove entries with unwanted FAR                                                                                  | Some FAR parts have significantly different safety                                                                                                     |
|          | parts. Kept Part 121, 125, 129, 135 and selected Part 91 operations.                                              | regulations (e.g., pilot qualifications). The following<br>cases were removed:                                                                         |
|          | 1                                                                                                                 | <ul> <li>Part 91F: Special Flt Ops.</li> </ul>                                                                                                         |
|          |                                                                                                                   | o Part 103: Ultralight                                                                                                                                 |
|          |                                                                                                                   | o Part 105: Parachute Jumping                                                                                                                          |
|          |                                                                                                                   | <ul> <li>Part 133: Rotorcraft Ext. Load</li> </ul>                                                                                                     |
|          |                                                                                                                   | o Part 137: Agricultural                                                                                                                               |
|          |                                                                                                                   | o Part 141: Pilot Schools                                                                                                                              |
|          |                                                                                                                   | o Armed Forces                                                                                                                                         |
| 4        | Remove occurrences for unwanted                                                                                   | Study focus is the runway safety area. Situations                                                                                                      |
|          | phases of flight                                                                                                  | when the RSA cannot help mitigating accident and                                                                                                       |
|          |                                                                                                                   | incident consequences were discarded to increase                                                                                                       |
|          |                                                                                                                   | model validity.                                                                                                                                        |
| 5        | Remove all single engine aircraft and                                                                             | Piston engine aircraft are now used less frequently                                                                                                    |
|          | all piston engine aircraft entries                                                                                | in civil aviation and therefore have been removed,                                                                                                     |
|          |                                                                                                                   | to increase the validity of the modeling. Moreover                                                                                                     |
|          |                                                                                                                   | single and piston engine aircraft behave differently                                                                                                   |
|          |                                                                                                                   | in accidents due to the lower energy levels involved                                                                                                   |
|          |                                                                                                                   | and the fact that the major focus of this study is air                                                                                                 |
| ,        |                                                                                                                   | carrier aircraft.                                                                                                                                      |
| 6        | Remove all accidents and incidents<br>when the point of first impact and the<br>wreckage final location is beyond | It would be unfeasible to have an RSA with more<br>than 2000ft beyond the threshold or 1000ft from the<br>runway centerline, the gain in safety is not |
|          | 2000ft from runway end and 1000ft                                                                                 | significant and both the previous ACRP study and                                                                                                       |
|          | from runway centerline.                                                                                           | the FAA study used the 2000ft criteria (David 1990).                                                                                                   |
|          |                                                                                                                   | 1770).                                                                                                                                                 |

#### Table 1. Filtering criteria for accidents and incidents.

| Paste J A B Z U E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           | New Σ Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL Selection *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lipboard 🖼 Font                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i≣ i≣ aby<br>Rich Text                                                                                                                                                                                                                                                                                                                                    | Refresh<br>All + Delete + More +<br>Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2↓     ✓ Selection *       X↓     ✓ Advanced *       Pilter     ✓ Toggle Filter       Sort & Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Size to Switch<br>Fit Form Windows *<br>Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pull Database - Basic Info       Image: Database ID     -2116213923     Event ID     20080119000489C     Accident Class     LDVOFF     Image: Display the second |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Event Type Incident<br>Researcher HS<br>Source AIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Country     State     City                                                                                                                                                                                                                                                                                                                                | US<br>AK<br>DILLINGHAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Basic Notes: Complete Delete From Database ON JANUARY 19, 2008, AT ABOUT 2024GMT, A BOEING 737-200 AIRPLANE, N322DL SUSTAINED MINOR DAMAGE TO ITS LEFT ENGINE LOWER COWLING WHEN SEVERAL RUNWAY EDGE LIGHTS DURING LANDING AT DILLINGHAM AIRPORT, DILLINGHAM, ALASKA, THE AIRPLANE WAS BEING OPERATED AS AN INSTRUM FLIGHT RULES (IFR) ALL CARGO FLIGHT UNDER THILE 14, CFR PART 121 SUPPLEMENTAL OPERATION, BY NORTHERN AIR CARGO, INC. OF ANCHORAGE, ALAS FLIGHT CREW CONSISTED OF TWO AIRLINE TRANSPORT PILOTS AND NO INJURIES WERE REPORTED. THE INTENDED DESTINATION WAS DILLINGHAM, ALASKA, THE AIRPLANE, VAS BEING OPERATED AS AN INSTRUM FLIGHT CREW STATEMENTS INDICATE THAT BRAKING ACTION WAS REPORTED AS "FAIR" BY LOCKHEED L-382 AND WEATHER REPORTS STATE A STEADY CROSSWIND COMPONENT OF APPROXIMATELY TWENTY SIX (26) KNOTS GUSTING TO THIRTY EIGHT (38) KNOTS, AT APPROXIMATELY THE HALFWAY POINT SIXTY FOUR HUNDRED (6400) FOOT RUNWAY THE AIRCRAFT WEATHER VANED INTO THE WIND AND DRIFTED LEFT OF CENTERILINE STRIKING THE RUNWAY ULGHTS. THE FLIGHT CREW WAS ABLE TO STOP THE AIRCRAFT APPROXIMATELY FIFTEEN HUNDRED (1500) FEET FROM THE NORTH END OF RUNWAY 01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NSTRUMENT<br>GE, ALASKA, THE<br>IAM, ALASKA,<br>STEADY<br>Y POINT OF THE<br>RUNWAY EDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ord: ₩ 4 8 of 1442 ► ₩ ►₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 😵 Unfiltered Search 🖣                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۱.<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Database ID211621<br>Basic Data Flight Data Weather<br>Event Type Incident<br>Researcher HS<br>Source AIDS<br>Basic Notes:<br>ON JANUARY 19, 2008, AT AB<br>SEVERAL RUNWAY EDGE LIC<br>FLIGHT RULES (IFR) ALL CAR<br>FLIGHT CREW CONSISTE DO<br>FLIGHT CREW STATEMENTS<br>CROSSWIND COMPONENT CO<br>SIXTY FOUR HUNDRED (6400<br>LIGHTS, THE FLIGHT CREW V | Database ID       -2116213923       Event ID         Basic Data       Flight Data       Weather       Wreckage Info       Anomalies         Event Type       Incident       Country         Researcher       HS       State         Source       AIDS       City         Basic Notes:       Com         ON JANUARY 19, 2008, AT ABOUT 2024GMT, A BOEING 737-200 A         SEVERAL RUNWAY EDGE LIGHTS DURING LANDING AT DILLIN         FLIGHT RULES (IFR) ALL CARGO FLIGHT UNDER TITLE 14, CFR I         FLIGHT CREW CONSISTED OF TWO AIRLINE TRANSPORT PILO         FLIGHT CREW STATEMENTS INDICATE THAT BRAKING ACTION         CROSSWIND COMPONENT OF APPROXIMATELY TWENTY SM (         SKTY FOUR HUNDED [6400] FOOT RUNWAY THE AIRCRAFT         LIGHTS. THE FLIGHT CREW WAS ABLE TO STOP THE AIRCRAFT | Database ID       -2116213923       Event ID       20080119000489C         Basic Data       Flight Data       Weather       Wreckage Into       Anomalies         Event Type       Incident         Country       US         Researcher       HS         State       AK         Source       AIDS       City       DILLINGHAM         Basic Notes:       Complete         Delete From I         ON JANUARY 19, 2008, AT ABOUT 2024GMT, A BOEING 737-200 AIRPLANE, N322DL, SUSTAINED MIN<br>SEVERAL RUINWAY EDGE LIGHTS DURING LANDING AT DILLINGHAM AIRPORT, DILLINGHAM, ALA<br>FLIGHT CREW CONSISTED OF TWO AIRLINE TRANSPORT PILOTS AND NO INJURIES WERE REPOR<br>FLIGHT CREW STATEMENTS INDICATE THAT BRAKING ACTION WAS REPORTED AS "FAIR" BY LO<br>COSSWIND COMPONENT OF APPROXIMATELY TWENTY SIX (26) KNOTS GUSTING TO THIRTY BY<br>LIGHTS. THE FLIGHT CREW WAS ABLE TO STOP THE AIRCRAFT APPROXIMATELY FIFTEEN HUNI | Database ID       -2116213923       Event ID       20080119000489C       Accident Class       LDVOF         Basic Data       Flight Data       Weather       Wreckage Info       Anomalies         Event Type       Incident          Country       US          Time          GMT         Basic Data       HS            State          AK          Time          GMT         Source       AIDS          City       DILLINGHAM          Date          1          Basic Notes:          Complete          Complete          Delete From Database           O          ON JANUARY 19, 2008, AT ABOUT 2024GMT, A BOEING 737-200          AIRPLANE, N322DL, SUSTAINED MINOR DAMAGE TO ITS LEFT ENG<br>SEVERAL RUNWAY EDGE LIGHTS DURING LANDING AT DILLINGHAM AIRPORT, DILLINGHAM, ALASKA, THE AIRPLANE WAS BEING<br>FLIGHT CREW CONSISTED OF TWO AIRLINE TRANSPORT PLICTS AND NO INJURIES WERE REPORTED. THE INTENDED DESTIN<br>FLIGHT CREW STATEMENTS INDICATE THAT BRAKING ACTION WAS REPORTED AS "FAIR" BY LOCKHEED L-382 AND WEATHER<br>CROSSWIND COMPONENT OF APPROXIMATELY TWENTY SIX (26) KNOTS AS USTING TO THIRTY EIGHT (38) KNOTS. AT APPROXIM<br>SKTY, FOUR HUNDRED (6400) FOOT RUNWAY THE AIRCRAFT WEATHER VANED INTO THE WIND AND DRIFTED LEFT OF CENTE<br>LIGHTS. THE FLIGHT CREW WAS ABLE TO STOP THE AIRCRAFT APPROXIMATELY FIFTEEN HUNDRED (1500) FEET FROM THE NU | Database ID       -2116213923       Event ID       20080119000489C       Accident Class       LDVOFF         Basic Data       Flight Data       Weather       Wreckage Info       Anomalies         Event Type       Incident       Country       US       Time       2024         Researcher       HS       State       AK       Date       1/19/2008         Basic Notes:       Complete       Image: Complete       Delete From Database       Image: Complete       Image: Complete: Complete       Image: Complete: Complet: |

Figure 6. Accident and incident database for aircraft overruns, undershoots, and veer-offs.

#### Accidents/Incidents by Type

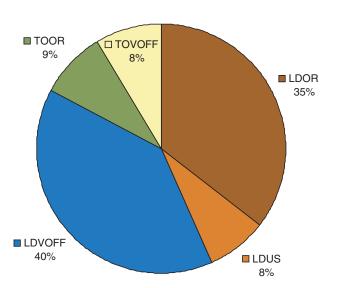



Figure 7. Summary of accidents and incidents by type.

The database includes, for each individual event or operation, the reporting agency, the aircraft characteristics, the runway and environmental conditions, event classification (accident or incident), and other relevant information such as consequences (fatalities, injuries, and damage) and causal or contributing factors required to develop the probability models. A unique identifier was assigned to each event.

#### **Summary of Data**

Figure 7 presents the summary of accidents and incidents by type, and Figure 8 shows the relative percentages for each type. Landing events accounted for 83% of the events. Overruns (landing and takeoffs) accounted for 44% of accidents



Events by Type

*Figure 8. Percentage of accidents and incidents by type.* 

and incidents; veer-offs accounted for 48%; and undershoots accounted for only 8% of the total number of events.

Figure 9 presents the number of incidents and accidents by year from 1978 to 2008. The number of events reported in the 1970s was relatively low, most likely due to underreporting and lower volumes of traffic. The number of events increased slowly, and there is a sharp drop during the past 3 years. It is possible that some events are still undergoing the investigation and that reports were not available by the time data collection was completed.

Figures 10 to 14 show the distribution of accidents and incidents according to their location. For overruns and undershoots, the locations refer to the longitudinal distance from the runway end. For veer-offs, it is the lateral distance from the runway longitudinal edge.

Five hundred one landing overrun events were identified. In approximately 95% of the events, the aircraft stopped within 1000 ft after overrunning the runway, and close to 77% stopped within 500 ft.

One hundred eleven landing undershoot events were identified, and in approximately 94% of the cases, the aircraft touched the terrain within 1000 feet of the runway arrival end. Approximately 85% touched down within 600 feet and 80% within 500 feet.

Veer-off distances were measured from the runway edge. Of the 559 cases of landing veer-off identified, in approximately 80% of the cases the fuselage of the aircraft deviated less than 175 feet from the runway edge. For 88% of the events, the aircraft was within 250 feet of the runway edge.

A total of 123 takeoff overrun accidents and incidents were identified. For approximately 83% of the cases, the stop location was within 1000 feet of the runway departure end, and for 56%, the aircraft stopped within 500 feet.

Of the 120 takeoff veer-off accidents and incidents, in approximately 76% of the cases the fuselage of the aircraft

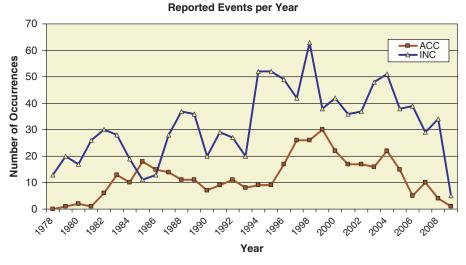



Figure 9. Number of reported accidents and incidents from 1978 to 2008.

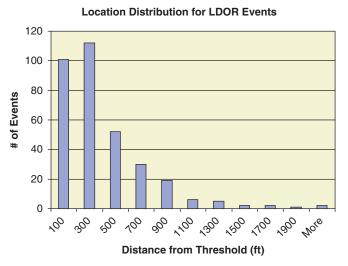



Figure 10. Location distribution for landing overruns.

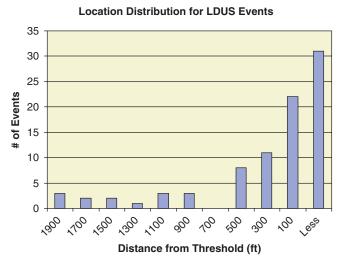



Figure 11. Location distribution for landing undershoots.

Location Distribution for LDVO Events 70 60 50 # of Events 40 30 20 10 0 500 More 200 ŝ 0, , 6º 5 200 NSO City 65 °b, Distance from Runway Edge (ft)

*Figure 12. Location distribution for landing veer-offs.* 

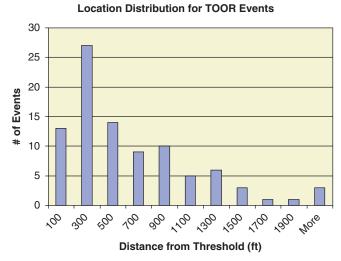



Figure 13. Location distribution for takeoff overruns.

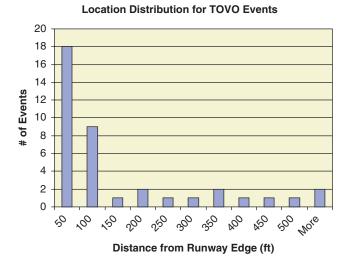



Figure 14. Location distribution for takeoff veer-offs.

deviated less than 175 feet from the runway edge. In 85% of the events, the aircraft was within 250 feet of the runway edge.

#### **Normal Operations Data**

Another key approach in this study was the use of NOD for probability modeling. In the absence of information on risk exposure, even though the occurrence of a factor (e.g., contaminated runway) could be identified as a contributor to many accidents, it is impossible to know how critical the factor is, since many other flights may have experienced the factor without incidents. With NOD, the number of operations that experience the factor benignly, singly, and in combination can be calculated; risk ratios can be generated; and the importance of risk factors can be quantified. This assessment may allow the prioritization of resource allocation for safety improvement (Enders et al. 1996).

The same NOD used in the *ACRP Report 3* study was used in this study. The data were complemented with information for GA aircraft with MTOW lower than 12,500 lb and higher than 6,000 lb. The NOD database comprises a large and representative sample of disaggregate U.S. NOD covering a range of risk factors, allowing their criticality to be quantified. The data and the information on U.S. incidents and accidents were used as a sample to develop the frequency models only. A small sample of the NOD used in this study is presented in Appendix C.

Incorporating this risk exposure information into the accident frequency model enhances its predictive power and provides the basis for formulating more risk-sensitive and responsive RSA policies. Accident frequency models need no longer rely on simple crash rates based on just aircraft, engine, or operation type. As discussed in the following pages, factors previously ignored by airport risk assessments and RSA regulations are accounted for using the models developed in this study.

#### **Aircraft Data**

One of the project goals was to incorporate a factor in the models to account for the impact of aircraft performance and available runway length on probability of incidents. When the distance available is close to the distance required, the safety margin is smaller during the aircraft landing or takeoff, and the likelihood is greater that an overrun or veer-off will occur.

Compared to the *ACRP Report 3* study, two new factors were included in the improved models: the runway distance available for the operation (takeoff or landing) and the aircraft runway distance required under the operation conditions. The runway available and required distances were gathered or estimated for each accident, incident, and normal operation, according to the procedures described in ensuing sections. The parameter introduced in the frequency models was the logarithm of the ratio between the distance required and the distance available, to address the interaction between the two parameters. When the criticality factor is close to zero, the ratio between the required and available distance is close to one.

Aircraft dimensions and performance data were gathered from various sources, including aircraft manufacturers' websites and other databases:

- FAA Aircraft Characteristics Database.
  - Source: FAA
  - Website: (http://www.faa.gov/airports/engineering/ aircraft\_char\_database/)
- Eurocontrol Aircraft Performance Database V2.0
  - Source: Eurocontrol
  - Website: (http://elearning.ians.lu/aircraftperformance/).
- FAA Aircraft Situation Display to Industry (ASDI)—Aircraft Types.
  - Source: FAA
  - Website: (http://www.fly.faa.gov/ASDI/asdidocs/aircraft\_ types.txt).
- Boeing Airplane Characteristics for Airport Planning.
  - Source: The Boeing Company
  - Website: http://www.boeing.com/commercial/airports/ plan\_manuals.html
- Airbus Airplane Characteristics for Airport Planning.
  - Source: Airbus Industrie
  - Website: airbus.com/Support/Engineering & Maintenance/Technical data/Aircraft Characteristics
- Embraer Aircraft Characteristics for Airport Planning.
   Source: Embraer
  - Website: http://www.embraeraviationservices.com/ english/content/aeronaves/

Aircraft performance data used to develop the probability models also were incorporated into the analysis software. A summary of the aircraft database is presented in Appendix D.

# CHAPTER 3 Modeling RSA Risk

The analysis of RSA risk requires three models that consider probability (frequency), location and consequences. The outcome of the analysis is the risk of accident during runway excursions and undershoots. The three model approach is represented in Figure 15.

The first model is used to estimate the probability that an event will occur given certain operational conditions. This probability does not address the likelihood that the aircraft may strike an obstacle or will stop beyond a certain distance. The model uses independent variables associated with causal and contributing factors for the incident. For example, under tailwind conditions it is more likely that an overrun will occur, and this is one of the factors used in the models for overruns. The aircraft performance is represented by the interaction between the runway distance required by the aircraft for the given conditions and the runway distance available at the airport. Although human and organizational factors are among the most important causes of aircraft accidents, it was not possible to directly incorporate these factors into the risk models. Since this model is specific for the event type, five different models are required, e.g., one for landing overruns and another one for takeoff overruns.

The second component is the location model. The analyst usually is interested in evaluating the likelihood that an aircraft will depart the runway and stop beyond the RSA or strike an obstacle. The location model is used to estimate the probability that the aircraft stops beyond a certain distance from the runway. As pointed out in *ACRP Report 3* and by Wong (2007), the probability of an accident is not equal for all locations around the airport. The probability of an accident in the proximity of the runways is higher than at larger distances from the runway. Since this model is specific for the event type, five different models are required, e.g., one for landing overruns and another one for takeoff overruns.

The last part is the consequence model. This model uses the location models to assess the likelihood that an aircraft will strike an obstacle or depart the RSA and fall into a drop in the terrain or into a water body adjacent to the RSA. In addition, it takes into consideration the type of obstacle and the estimated collision speed to cause severe consequences. For example, an aircraft colliding with a brick building may result in severe consequences even at low speeds; however, the aircraft must be at a higher speed when striking a Localizer antenna mounted on a frangible structure for a similar level of severity. The collision speed is evaluated based on the location of the obstacle and the typical aircraft deceleration for the type of RSA terrain. The ensuing sections provide details for each component of the risk model. The same model is used for all five types of events (LDUS, LDOR, LDVO, TOOR, and TOVO.)

The remainder of this chapter discusses the probability and location models. The consequence model is discussed in Chapter 4.

#### **Event Probability (Frequency Model)**

Similar to ACRP Report 3 model development procedures, backward stepwise logistic regression was used to calibrate five frequency models, one for each type of incident: LDOR, LDUS, LDVO, TOVO, and TOOR. Various numerical techniques were evaluated to conduct the multivariate analysis, and logistic regression was the preferred statistical procedure for a number of reasons. This technique is suited to models with a dichotomous outcome (accident and non-accident) with multiple predictor variables that include a mixture of continuous and categorical parameters. Also, it is particularly appropriate for case-control studies because it allows the use of samples with different sampling fractions, depending on the outcome variable without giving biased results. Backward stepwise logistic regression was used to calibrate the frequency models because of the predictive nature of the research, and the technique is able to identify relationships missed by forward stepwise logistic regression (Hosmer and Lemeshow 2000).

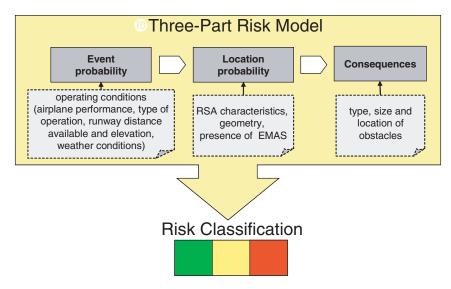



Figure 15. Modeling approach.

To avoid the negative effects of multi-co-linearity on the model, correlations between independent variables were first tested to eliminate highly correlated variables, particularly if they did not significantly contribute to explaining the variation of the probability of an accident.

The basic model structure selected is a logistic equation, as follows:

$$P\{Accident\_Occurence\} = \frac{1}{1 + e^{b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + \dots}}$$

where

rence} = the probability (0–100%) of an accident type occurring given certain operational conditions;

- X<sub>i</sub> = independent variables (e.g., ceiling, visibility, crosswind, precipitation, aircraft type, criticality factor); and
- $b_i$  = regression coefficients.

Several parameters were considered for inclusion in the models. The backward stepwise procedure helps identify those variables that are relevant for each type of event. Some of the independent variables are converted to binary form to avoid spurious effects of non-linear relationships in the model exponent. These binary variables are represented by only two values, 0 or 1. In this case, the presence of the factor (e.g., rain) is represented by 1, and the absence of the factor (e.g., no rain) is represented by 0.

One significant improvement relative to the models presented in *ACRP Report 3* is the use of tailwind and headwind. These variables were not present in previous models because the actual runway had not been identified for the NOD. The research team has gathered information on the runways used, and the process allowed the calculation of the head/tailwind components to be included in the model.

Another major improvement that has increased model accuracy was the inclusion of a runway criticality factor. The basic idea was to include a new parameter that could represent the interaction between the runway distance required by the aircraft and the runway distance available at the airport. The log of the ratio between the distance required and the distance available was used. Positive values represent situations when the distance available was smaller than the distance required, and in this case, risk will be higher. The greater the value is, the more critical is the operation because the safety margin decreases.

The distance required is a function of the aircraft performance under specific conditions. Therefore, every distance required under International Standards Organization (ISO) conditions (sea level, 15 degrees centigrade) was converted to actual conditions for operations. Moreover, the distances were adjusted for the runway surface condition (wet, snow, slush, or ice) and for the level of head/tailwind. The adjustment factors applied to the distance required are presented in Table 2. A correction for slope was not applied to adjust the total distance required.

The use of NOD in the accident frequency model was a major improvement introduced by Wong et al. (2006) and was maintained for this study. The analysis with NOD also adds to the understanding of cause-result relationships of the five accident types.

The technique used to develop the models is able to identify relationships missed by forward stepwise logistic regression (Hosmer and Lemeshow 2000). The predictor variables

Local Factor Unit Adjustment Reference Elevation (E) (i) 1000 ft E = 0 ft (sea level)  $F_e = 0.07 \text{ x E} + 1$ Temperature (T) (i deg C T = 15 deg C $F_t = 0.01 \text{ x} (T - (15 - 1.981 \text{ E}) + 1$ Tailwind (TWLDJ) for  $F_{TWJ} = (RD + 22 \text{ x } TWLDJ)/RD$ TWLDJ = 0 knot knot Jets (iii) Tailwind (TWLDT) for TWLDT = 0 knot  $F_{TWJ} = (RD + 30 \text{ x TWLDT})/RD$ knot Turboprops (iii) Headwind (HWTOJ) for HWTOJ = 0 knot  $F_{TWJ} = (RD + 6 \text{ x HWTOJ})/RD$ knot Jets (iii) Headwind (HWTOT) for HWTOJ = 0 knot  $F_{TWJ} = (RD + 6 \text{ x HWTOT})/RD$ knot Turboprops (iii) Runway Surface Condition Yes/No  $F_{W} = 1.4$ Dry - Wet (W)  $^{(iv)}$ Runway Surface Condition  $F_{s} = 1.6$ Yes/No Dry - Snow (S)  $^{(iv)}$ Runway Surface Condition Yes/No  $F_{S1} = 2.0$ Drv – Slush (Sl) <sup>(iv)</sup> Runway Surface Condition Yes/No Dry  $F_1 = 3.5$ - Ice (I) (iv)

Table 2. Adjustment factors used to correct required distances.

i - RD is the runway distance required in feet

ii - temperature and elevation corrections used for runway design

iii – correction for wind are average values for aircraft type (jet or turboprop)

iv - runway contamination factors are those suggested by Flight Safety Foundation

were entered by blocks, each consisting of related factors, such that the change in the model's substantive significance could be observed as the variables were included. Table 3 summarizes the model coefficients obtained for each model.

Table 4 summarizes the parameters representing the accuracy of each model obtained. The table presents the R<sup>2</sup> and C-values for each model. It is important to note that relatively low R<sup>2</sup> values are the norm in logistic regression (Ash and Schwartz 1999) and they should not be compared with the R<sup>2</sup> of linear regressions (Hosmer and Lemeshow 2000). A better parameter to assess the predictive capability of a logistic model is the C-value. This parameter represents the area under the sensitivity/specificity curve for the model, which is known as Receiver Operating Characteristic (ROC) curve.

Sensitivity and specificity are statistical measures of the performance of a binary classification test. Sensitivity measures the proportion of true positives that are correctly identified as such (the percentage of accidents and incidents that are correctly identified when using the model). Specificity measures the proportion of true negatives that are correctly identified (the percentage of normal operations that the model can correctly identify as non-incident). These two measures are closely related to the concepts of Type I and Type II errors. A theoretical, optimal prediction can achieve 100% sensitivity (i.e., predict all incidents) and 100% specificity (i.e., not predict a normal operation as an incident). A perfect model has a C-value equal to 1.00.

To assess how successful the models are in classifying flights correctly as "accident" or "normal" and to find the appropriate cut-off points for the logistic regression models, the ROC curves were defined for each model to calculate the C-value. An example of this assessment is shown in Figure 16 representing the model for landing overruns. The area under the curve for this model represents the C-value and is 87.4%. The C-values for each of the five models developed were above 78% and are considered excellent models.

The cut-off point is the critical probability above which the model will class an event as an accident. The ROC curve plots all potential cut-off points according to their respective True Positive Rates and False Positive Rates. The best cut-off point has an optimally high sensitivity and specificity.

#### **Event Location Models**

The accident location models are based on historical accident data for aircraft overruns, veer-offs, and undershoots. The accident location for overruns depends on the type of terrain (paved or unpaved) and if EMAS is installed in the RSA. When EMAS is available, during landing and takeoff overruns, the aircraft will stop at shorter distances, and typical deceleration for the type of aircraft is used to assess the location probability.

Worldwide data on accidents and incidents were used to develop the location models. The model structure is similar to the one used by Eddowes et al. (2001). Based on the accident/ incident location data, five sets of complementary cumulative probability distribution (CCPD) models were developed. With CCPDs, the fraction of accidents involving locations exceeding a given distance from the runway end or threshold can be estimated. When the CCPD is multiplied by the frequency of accident occurrence, a complementary cumulative frequency

| Variable                  | LDOR    | LDUS    | LDVO    | TOOR    | TOVO    |
|---------------------------|---------|---------|---------|---------|---------|
| Adjusted Constant         | -13.065 | -15.378 | -13.088 | -14.293 | -15.612 |
| User Class F              |         | 1.693   |         | 1.266   |         |
| User Class G              | 1.539   | 1.288   | 1.682   |         | 2.094   |
| User Class T/C            | -0.498  | 0.017   |         |         |         |
| Aircraft Class A/B        | -1.013  | -0.778  | -0.770  | -1.150  | -0.852  |
| Aircraft Class D/E/F      | 0.935   | 0.138   | -0.252  | -2.108  | -0.091  |
| Ceiling less than 200 ft  | -0.019  | 0.070   |         | 0.792   |         |
| Ceiling 200 to 1000 ft    | -0.772  | -1.144  |         | -0.114  |         |
| Ceiling 1000 to 2500 ft   | -0.345  | -0.721  |         |         |         |
| Visibility less than 2 SM | 2.881   | 3.096   | 2.143   | 1.364   | 2.042   |
| Visibility from 2 to 4 SM | 1.532   | 1.824   |         | -0.334  | 0.808   |
| Visibility from 4 to 8 SM | 0.200   | 0.416   |         | 0.652   | -1.500  |
| Xwind from 5 to 12 kt     | -0.913  | -0.295  | 0.653   | -0.695  | 0.102   |
| Xwind from 2 to 5 kt      | -1.342  | -0.698  | -0.091  | -1.045  |         |
| Xwind more than 12 kt     | -0.921  | -1.166  | 2.192   | 0.219   | 0.706   |
| Tailwind from 5 to 12 kt  |         |         | 0.066   |         |         |
| Tailwind more than 12 kt  | 0.786   |         | 0.98    |         |         |
| Temp less than 5 C        | 0.043   | 0.197   | 0.558   | 0.269   | 0.988   |
| Temp from 5 to 15 C       | -0.019  | -0.71   | -0.453  | -0.544  | -0.42   |
| Temp more than 25 C       | -1.067  | -0.463  | 0.291   | 0.315   | -0.921  |
| Icing Conditions          | 2.007   | 2.703   | 2.67    | 3.324   |         |
| Rain                      |         | 0.991   | -0.126  | 0.355   | -1.541  |
| Snow                      | 0.449   | -0.25   | 0.548   | 0.721   | 0.963   |
| Frozen Precipitation      |         |         | -0.103  |         |         |
| Gusts                     |         | 0.041   | -0.036  | 0.006   |         |
| Fog                       |         |         | 1.74    |         |         |
| Thunderstorm              | -1.344  |         |         |         |         |
| Turboprop                 |         |         | -2.517  | 0.56    | 1.522   |
| Foreign OD                | 0.929   | 1.354   | -0.334  |         | -0.236  |
| Hub/Non-Hub Airport       | 1.334   |         |         |         | -0.692  |
| Log Criticality Factor    | 9.237   | 1.629   | 4.318   |         | 1.707   |
| Night Conditions          |         |         | -1.36   |         |         |

Table 3. Independent variables used for frequency models.

Where:

|                            | Ref:                                                         |                                                        |  |  |
|----------------------------|--------------------------------------------------------------|--------------------------------------------------------|--|--|
| Equipment Class            | С                                                            | Large jet of MTOW 41k-255k lb (B737, A320 etc.)        |  |  |
| Heavy Acft                 | AB Heavy jets of MTOW 255k lb+ (B777, A340, etc.)            |                                                        |  |  |
|                            |                                                              | Large commuter of MTOW 41k-255k lb (Regional Jets,     |  |  |
| Commuter Acft              | D                                                            | ERJ-190, CRJ-900, ATR42, etc.)                         |  |  |
|                            |                                                              | Medium aircraft of MTOW 12.5k-41k lb (biz jets,        |  |  |
| Medium Acft                | Е                                                            | Embraer 120, Learjet 35 etc.)                          |  |  |
| Small Acft                 | F                                                            | Small aircraft of MTOW 12.5k or less (small, Beech-90, |  |  |
|                            |                                                              | Cessna Caravan, etc.)                                  |  |  |
| User Class                 | Ref: 0                                                       | C = Commercial                                         |  |  |
| User Class F               | Cargo                                                        |                                                        |  |  |
| User Class T/C             | Taxi/                                                        | Commuter                                               |  |  |
| User Class G               | Gener                                                        | al Aviation                                            |  |  |
| Foreign OD                 | Foreig                                                       | gn origin/destination (yes/no) - Ref: domestic         |  |  |
| Ceiling (feet)             | Ref: Ceiling Height > 2500 ft                                |                                                        |  |  |
| Visibility (Statute Miles) | Ref: Visibility > 8 SM                                       |                                                        |  |  |
| Crosswind (knots)          | Ref: Crosswind < 2 kt                                        |                                                        |  |  |
| Tailwind (knots)           | Ref: Tailwind < 5 kt                                         |                                                        |  |  |
| Gusts (knots)              | Ref: No gusts                                                |                                                        |  |  |
| Thunderstorms (yes/no)     | Ref: No thunderstorms                                        |                                                        |  |  |
| Icing Conditions (yes/no)  | Ref: No icing conditions                                     |                                                        |  |  |
| Snow (yes/no)              | Ref: No snow                                                 |                                                        |  |  |
| Rain (yes/no)              | Ref: No rain                                                 |                                                        |  |  |
| Fog (yes/no)               | Ref: No fog                                                  |                                                        |  |  |
| Air Temperature (deg C)    | Ref: Air temperature above 15 C and below 25C                |                                                        |  |  |
| Non-Hub Airport (yes/no)   | Ref: Hub airport                                             |                                                        |  |  |
| Log Criticality Factor     | If $Log(CF) > 0$ , available runway distance is smaller than |                                                        |  |  |
|                            | requir                                                       | ed distance                                            |  |  |

#### Notes:

Ref: indicates the reference category against which the odds ratios should be interpreted. Non-hub airport: airport having less than 0.05% of annual passenger boardings.

Table 4. Summary statistics for frequency models.

| Model | $\mathbb{R}^2$ | С    |
|-------|----------------|------|
| LDOR  | 0.28           | 0.87 |
| LDUS  | 0.14           | 0.85 |
| LDVO  | 0.32           | 0.88 |
| TOOR  | 0.11           | 0.78 |
| TOVO  | 0.14           | 0.82 |

distribution (CCFD) is obtained. The latter quantifies the overall frequency of accidents involving locations exceeding a given distance from the runway boundaries.

Figures 17 to 19 show the axis locations used to represent each type of incident. The reference location of the aircraft is its nose wheel. For overruns and undershoots, the x-y origin is the centerline at the runway end. For veer-offs, the y-axis origin is the edge of the runway, not necessarily the edge of the paved area when the runway has shoulders.

For the longitudinal distribution, the basic model is:

$$P\{Location > x\} = e^{-ax^n}$$

where

P{Location > x} = the probability the overrun/undershoot distance along the runway centerline beyond the runway end is greater than x;

- x = a given location or distance beyond the runway end; and
- a, n = regression coefficients.

A typical longitudinal location distribution is presented in Figure 20.

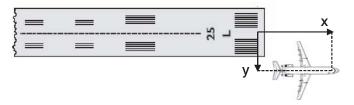



Figure 17. X-Y origin for aircraft overruns.

For the transverse distribution, the same model structure was selected. However, given the accident's transverse location for aircraft overruns and undershoots, in general, is not reported if the wreckage location is within the extended runway lateral limits, it was necessary to use weight factors to reduce model bias, particularly for modeling the tail of the probability distribution. The model can be represented by the following equation:

$$P\{Location > y\} = e^{-by^{t}}$$

where

| $P{Location>y} = the probability the overrun/undershoot$ |
|----------------------------------------------------------|
| distance from the runway border (veer-                   |
| offs) or centerline (overruns and under-                 |
| shoots) is greater than y;                               |
| y = a given location or distance from the                |
|                                                          |

- extended runway centerline or runway border; and
- b, m = regression coefficients.

A typical transverse location distribution is presented in Figure 21, and the model parameters are presented in Table 5.

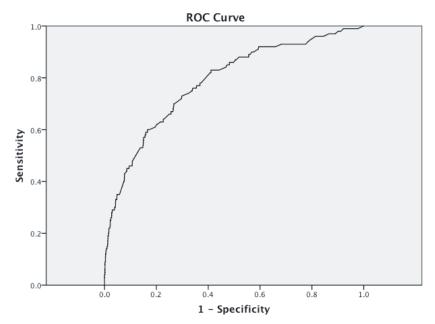



Figure 16. ROC curve for LDOR frequency model.

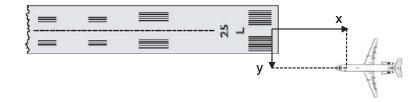



Figure 18. X-Y origin for aircraft undershoots.

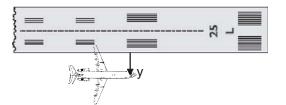



Figure 19. Y origin for aircraft veer-offs.

For Table 5, the following are the parameters represented:

- d = any given distance of interest;
- x = the longitudinal distance from the runway end;
- P{d>x} = the probability the wreckage location exceeds distance *x* from the runway end;
  - y = the transverse distance from the extended runway centerline (overruns and undershoots) or from the runway border (veer-offs); and
- P{d>y} = the probability the wreckage location exceeds distance *y* from the extended runway centerline (overruns and undershoots) or from the runway border (veer-offs).

Figures 22–29 illustrate the models presented in Table 5.

#### **EMAS Deceleration Model**

The analysis tool developed in this research includes the capability to evaluate RSAs with EMAS beds. The details of the development are presented in Appendix E.

The same location models for overruns are used when EMAS beds are available in the RSA. However, the bed



Figure 20. Typical model for aircraft overruns.

length is adjusted for each type of aircraft according to MTOW and the EMAS bed length, according to the following steps:

1. The maximum runway exit speed to hold the aircraft within the EMAS bed is calculated according to the model presented below. The adjusted R<sup>2</sup> for this model is 89%.

 $v = 3.0057 - 6.8329 \log(W) + 31.1482 \log(S)$ 

where:

- v = the maximum exit speed in m/s;
- W = the maximum takeoff weight of the aircraft in kg; and S = the EMAS bed length in meters.
- The maximum runway exit speed estimated using the previous regression equation, along with the EMAS bed length (S<sub>EMAS</sub>), is input in the following equation to calculate the deceleration of the aircraft in the EMAS bed.

$$a_{EMAS} = \frac{v^2}{2S}$$

3. The runway length factor is then estimated as follows:

$$RLF = \frac{a_{EMAS}}{a^{RSA}}$$

4. The runway length factor is then estimated as follows:

$$RLF = \frac{a_{EMAS}}{a^{RSA}}$$

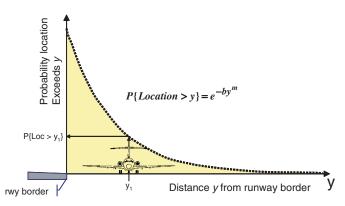



Figure 21. Typical model for aircraft veer-offs.

| Type of<br>Accident | Type of<br>Data | Model                                             | R <sup>2</sup> | # of<br>Points |
|---------------------|-----------------|---------------------------------------------------|----------------|----------------|
| LDOR                | Х               | $P\{d > x\} = e^{-0.00321x^{0.984941}}$           | 99.8%          | 305            |
|                     | Y               | $P\{d > y\} = e^{-0.20983  y^{0.4862}}$           | 93.9%          | 225            |
| LDUS                | Х               | $P\{d > x\} = e^{-0.0148  \mathrm{k}^{0.751499}}$ | 98.7%          | 83             |
|                     | Y               | $P\{d > y\} = e^{-0.02159y^{0.773896}}$           | 98.6%          | 86             |
| LDVO                | Y               | $P\{d > y\} = e^{-0.02568y^{0.803946}}$           | 99.5%          | 126            |
| TOOR                | Х               | $P\{d > x\} = e^{-0.00109x^{1.06764}}$            | 99.2%          | 89             |
| ·                   | Y               | $P\{d > y\} = e^{-0.04282y0.659566}$              | 98.7%          | 90             |
| TOVO                | Y               | $P\{d > y\} = e^{-0.01639 y^{0.863461}}$          | 94.2%          | 39             |

#### Table 5. Summary of location models.

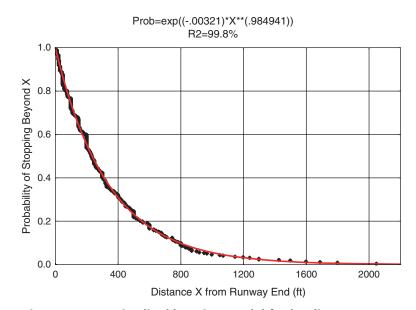



Figure 22. Longitudinal location model for landing overruns.




Figure 23. Transverse location model for landing overruns.



*Figure 24. Longitudinal location model for landing undershoots.* 

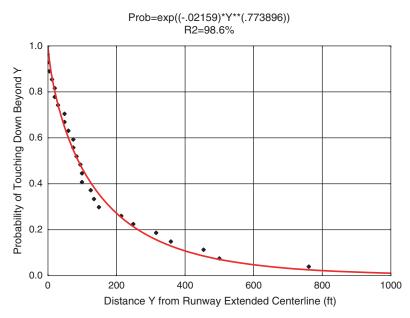



Figure 25. Transverse location model for landing undershoots.

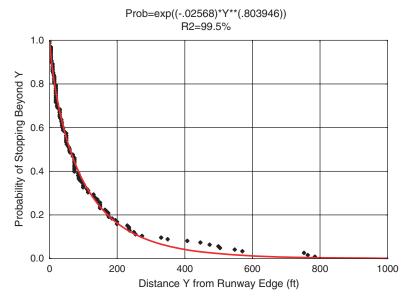



Figure 26. Lateral location model for landing veer-offs.

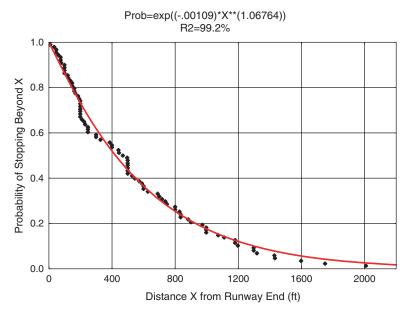



Figure 27. Longitudinal location model for takeoff overruns.

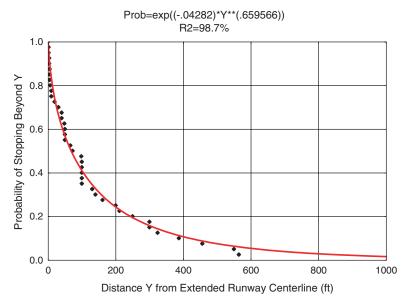



Figure 28. Transverse location model for takeoff overruns.

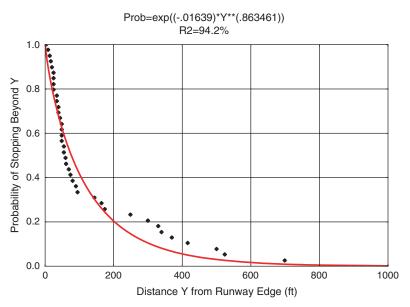



Figure 29. Lateral location model for takeoff veer-offs.

5. The equivalent length of conventional RSA is then calculated:

$$S_{RSA} = \frac{a_{EMAS}}{a_{RSA}} S_{EMAS} = RLF \quad S_{EMAS}$$

With the equivalent RSA length, the RSA is adjusted for each type of aircraft and is input into the standard location models presented in the previous section.

#### **Accuracy of Models**

There were five multivariate logistic frequency models, eight exponential location models, and one log linear deceleration model developed in this study. The accuracy of these models is considered excellent, with C-values ranging from 0.78 to 0.88 for the frequency models. The location models had R<sup>2</sup> values ranging from 93.9% to 99.8%, and the deceleration model for EMAS presented an adjusted R<sup>2</sup> of 89%.

## CHAPTER 4

## **Consequence** Approach

Risk is the likelihood of the worst credible consequence for a hazard. Many overruns, veer-offs, and undershoots have resulted in aircraft hull loss and multiple fatalities, and therefore, the worst credible level of consequences may be assumed to be catastrophic, according to the severity classification defined by the FAA and presented in Appendix F.

In some situations, a pilot may lose control of the aircraft, resulting in the destruction of the equipment with possible fatalities, even when the aircraft accident takes place inside the RSA or the runway; however, in the majority of accidents, the RSA will offer some protection to mitigate consequences. Consequences will depend on the type of structures and the level of energy during the aircraft collision. Possible obstacles may include buildings, ditches, highways, fences, pronounced drops in terrain, unprepared rough terrain, trees, and even navigational aids (NAVAID) structures, like approach lighting system (ALS) towers and Localizer antennas, particularly if mounted on sturdy structures.

The energy of the aircraft during the collision is related to its speed when it strikes the obstacle, i.e., the greater speeds are expected to result in more severe consequences. Also, the consequences will depend on the type of obstacle. An aircraft striking a brick building at 40 mph may be destroyed whereas if the obstacle is a perimeter fence less severe consequences are expected to occur.

The variables assumed to have an impact on consequences resulting from overruns, veer-offs, and undershoots are:

- Obstacle type, size, and location;
- Aircraft size (wingspan) and speed; and
- Number of obstacles and location distribution (shadowing).

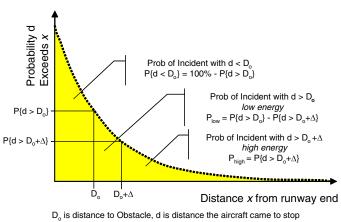
The basic approach is that presented in *ACRP Report 3*, as summarized in the ensuing sections. Additional details on how it was incorporated in the analysis are provided. The approach described in *ACRP Report 3* was intended to model accident and incident consequences so that they could be combined with the probability of aircraft overruns and undershoots for an assessment of risk. The approach is rational because it is based on physical and mathematical principles.

#### **Modeling Approach for Risk**

The basic idea was to assess the effect of different obstacles at various locations in the vicinity or inside the RSA. The approach integrates the probability distributions defined by the location models with the location, size, and characteristics of existing obstacles in the RSA and its vicinity.

The implementation of the approach required some simplifying assumptions so that it could be integrated with the frequency and location models. The following are the assumptions used:

- 1. Aircraft overrunning, undershooting, or veering off the runway will strike the obstacle in paths parallel to the runway direction. This assumption is necessary to define the area of influence of the obstacle.
- 2. Four categories of obstacles are defined as functions of the maximum speed that an aircraft may collide with an obstacle, with small chances of causing hull loss and injuries to its occupants:
  - a. Category 1: Maximum speed is nil (e.g., cliff at the RSA border, concrete wall).
  - b. Category 2: Maximum speed is 5 knots (e.g., brick buildings).
  - c. Category 3: Maximum speed is 20 knots (e.g., ditches, fences).
  - d. Category 4: Maximum speed is 40 knots (e.g., frangible structures, ALS).
- 3. Severe damage and injuries are expected only if the aircraft collides within the central third of the wingspan and with a speed higher than the maximum for that obstacle category. The concept is explained in the ensuing section.


4. The lateral distribution is random and does not depend on the presence of obstacles. This is a conservative assumption because there are events when the pilot will avoid the obstacles if he has some directional control of the aircraft. The accident/incident database contains a number of cases when the pilot avoided ILS and ALS structures in the RSA.

The main purpose of modeling consequences of aircraft accidents is to obtain an assessment of risk based on the likelihood for the worst credible consequence. It was not deemed necessary to develop a consequence model for each type of accident, as was done to model frequency and location. The approach can be used to address any of the five types of incidents included in the analysis.

The basic idea is to use the location models to estimate the incident occurrences for which the aircraft will have high energy when striking an obstacle, thus resulting in serious consequences. It should be noted that neither of the models used in the approach provides an estimate of the aircraft speed; however, using the location model and the average aircraft deceleration during a runway excursion, it is possible to infer the probability that the speed is above a certain level when reaching the obstacle. Figure 30 is used to illustrate the case for overruns and help understand the principle. This approach was introduced in *ACRP Report 3*.

The x-axis represents the longitudinal location of the wreckage relative to the runway departure end. The y-axis is the probability that the wreckage location exceeds a given distance "x."

In this example, an obstacle is located at a distance  $D_0$  from the departure end, and the example scenario being analyzed is an aircraft landing overrun incident. Figure 30 shows an exponential decay model developed for the specific accident scenario, in this case, landing overruns.



Area (yellow) between  $D_o$  and  $D_o+\Delta$  represents % occurrences at low speed (energy) when hitting obstacle (low consequences)

Figure 30. Approach to model consequences of overrun accidents.

There are three distinct regions in this plot. The first region (green) represents overruns that the aircraft departed the runway but the exit speed was relatively low and the aircraft came to a stop before reaching the existing obstacle. The consequences for such incidents associated with that specific obstacle are expected to be none if the x-location is smaller than  $D_0$ .

The rest of the curve represents events that the aircraft exited the runway at speeds high enough for the wreckage path to extend beyond the obstacle location. However, a portion of these accidents will have relatively higher energy and should result in more severe consequences, while for some cases the aircraft will be relatively slow when hitting the obstacle so that catastrophic consequences are less likely to happen. Using the location model, if x-location is between D<sub>0</sub> and D<sub>0</sub>+ $\Delta$ , it may be assumed that no major consequences are expected if the obstacle is present.

The value of  $\Delta$  is estimated based on aircraft deceleration over different types of terrain (paved, unpaved, or EMAS) and crashworthiness speed criteria for aircraft. It should be noted that  $\Delta$  depends on the type of terrain, type and size of aircraft, and type of obstacle. Frangible objects in the RSA are less prone to causing severe consequences. It also should be noted that lighter aircraft may stop faster and the landing gear configuration also may have an effect on the aircraft deceleration in soft terrain, but these factors are not accounted for in this approach.

Using this approach, it is possible to assign three scenarios: the probability that the aircraft will not hit the obstacle (green region—resulting in none or minor consequences); the probability that the aircraft will hit the obstacle with low speed and energy (yellow region—with substantial damage to aircraft but minor injuries); and the probability that the aircraft will hit the obstacle with high energy (orange region—with substantial damage and injuries).

For those events with low energy when impacting the obstacle, it is possible to assume that, if no obstacle was present, the aircraft would stop within a distance  $\Delta$  from the location of the obstacle. The problem is then to evaluate the rate of these accidents having low speeds at the obstacle location, and this is possible based on the same location model. This probability can be estimated by excluding the cases when the speed is high and the final wreckage location is significantly beyond the obstacle location.

To complement the approach it is necessary to combine the longitudinal and transverse location distribution with the presence, type, and dimensions of existing obstacles. The basic approach is represented in Figure 31 for a single and simple obstacle.

Laterally, if part of the obstacle is within the yellow zone, as shown in Figure 32a, medium consequences are expected; however, if any part of the obstacle is within the orange zone, as

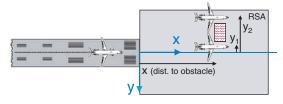



Figure 31. Modeling consequences.

shown in Figure 32b, and the speed is high, severe consequences are expected. If the obstacle is off the orange and yellow zones, no consequences related to that obstacle are expected.

In Figure 33, Obstacle 1 is located at a distance  $x_1$ ,  $y_1$  from the threshold and has dimensions  $W_1 \times L_1$ . When evaluating the possibility of severe consequences, it is possible to assume this will be the case if the aircraft fuselage or a section of the wing close to the fuselage strikes the obstacle at high speed. Thus, it is possible to assume the accident will have severe consequences if the y location is between  $y_c$  and  $y_f$ , as shown in the figure. Based on the location models for lateral distance, the probability the aircraft axis is within this range can be calculated as follows:

$$P_{sc} = \frac{e^{-by_c^m} - e^{-by_f^m}}{2}$$

where

 $P_{sc}$  = the probability of high consequences;

b, m = regression coefficients for the y-location model;

- $y_c$  = the critical aircraft location, relative to the obstacle, closest to the extended runway axis; and
- $y_f$  = the critical aircraft location, relative to the obstacle, farther from the extended runway axis.

Combining this approach with the longitudinal distribution approach and the possibility of multiple obstacles, the risk for accidents with severe consequences can be estimated using the following model:

$$P_{sc} = \sum_{i=1}^{N} \frac{\left(e^{-by_{ci}^{m}} - e^{-by_{fi}^{m}}\right)}{2} e^{-a(x_{i} + \Delta_{i})^{n}}$$

where

N = the number of existing obstacles;

a, n = regression coefficients for the x-model; and

 $\Delta_{t}$  = the location parameter for obstacle *i*.

Multiple obstacles may be evaluated using the same principle. A shadowing effect also is taken into account when part of obstacle *i*+1 is behind obstacle *i*. Because it is assumed that aircraft will travel in paths parallel to the runway centerline, any portion of the obstacle located behind at a distance greater than  $\Delta_i$  is disregarded from the analysis.

A quantitative assessment of risk likelihood will be obtained as a function of operating conditions (aircraft, weather, runway distances available) and RSA dimensions and conditions (presence of EMAS, presence, location, size, and type of obstacles, etc.). For the analysis, the user may select the alternative to evaluate the probability that an aircraft will go off the RSA or that severe consequences will take place.

#### **Implementation of Approach**

The implementation of the proposed approach is best explained using one example. Figure 34 depicts an area adjacent to the runway end with two obstacles. The area isn't necessarily the official airport RSA but any available area that can be

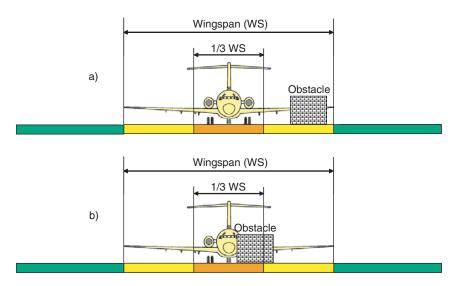



Figure 32. Lateral location versus consequences.

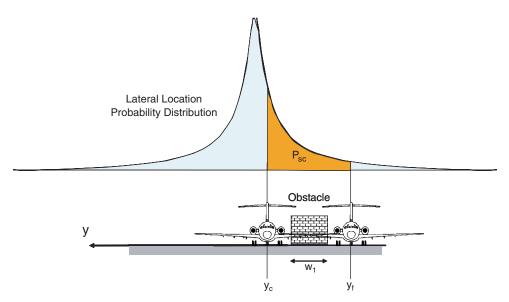



Figure 33. Modeling likelihood of striking an obstacle.

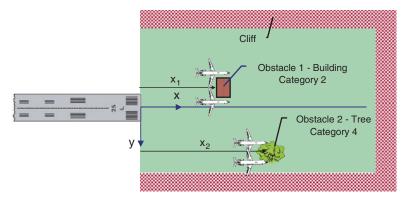



Figure 34. RSA scenario with obstacles.

used by an aircraft overrunning the runway end. The example shows the safety area surrounded by a cliff limiting its boundaries. Obstacle 1 is not frangible and is classified as a Category 2 obstacle (e.g., building), maximum collision speed of 5 knots, located at distance  $x_1$  from the runway end. For this obstacle, the maximum speed without severe consequences is estimated to be 5 knots. A second obstacle is a small size tree classified as Category 4, maximum speed of 40 knots, and located at distance  $x_2$  from the runway end. The remaining safety area is defined by the cliff surrounding the RSA and such boundary is classified as Category 1, maximum speed of 0 knots.

The typical aircraft deceleration in unpaved surfaces is 0.22*g*, where *g* is the acceleration due to gravity (32.2 ft/s<sup>2</sup>). Using the relationship between acceleration, velocity, and distance,  $\Delta$  can be calculated as shown in Table 6.

The  $\Delta$  values presented will be used to reduce the safety area so that only the effective portion where the aircraft may stop without severe damage is considered in the analysis. To perform the analysis, the frequency and location models are combined in a manner similar to that for the analysis without obstacles; however, the safety area is transformed to account for the presence of the obstacles, as shown in Figure 35.

The area used to calculate the probability as a function of the aircraft stopping location is shown in green. It should be noted that the safety area in the shadow of Obstacle 1 is much larger than that for Obstacle 2 for three reasons:

- 1. Obstacle 1 is wider than Obstacle 2.
- 2. The maximum speed for striking Obstacle 1 (Category 2) is lower than that for Obstacle 2 (Category 4).

| Obstacle | Max Speed | $\Delta$ (ft)   |
|----------|-----------|-----------------|
| Category | (knots)   | (See Figure 30) |
| 1        | 0         | 0               |
| 2        | 5         | 20              |
| 3        | 20        | 80              |
| 4        | 40        | 320             |

#### Table 6. Obstacle categories.

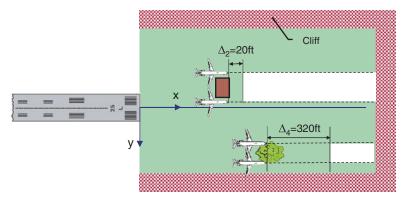



Figure 35. Effective RSA for analysis.

3. Obstacle 1 is located closer to the runway end, and aircraft speed is higher at this point than that at the location of Obstacle 2.

The analysis will provide the probability that the aircraft will overrun the runway and the incident will have severe consequences, thus providing an estimate of risk.

#### **Additional Simplifications**

Additional simplifications were necessary to implement the approach. One such simplification was the use of maximum aircraft design group (ADG) wingspan instead of the actual air-

craft wingspan. Without this simplification, a different safety area configuration would be required for each aircraft, greatly increasing the time to do the analysis. Using the ADG wingspan reduced the process to six steps, one for each ADG.

A second simplification was also necessary to reduce the time to perform the analysis. Although the obstacles are categorized according to the maximum speed to cause severe consequences, each type of aircraft will have a different maximum speed. However, it would be very time-consuming to apply these differences in the calculations. Therefore, the maximum speed in the proposed approach depends only on the type of obstacle rather than the interaction between the obstacle and the aircraft.

### CHAPTER 5

# **Analysis Software**

#### **Overview**

One of the main project goals was to develop an analysis tool to incorporate the approach and the models developed in this study. The software is called Runway Safety Area Risk Analysis (RSARA). The program and the accompanying user's guide are available on the accompany CD with this report. In addition, the user's guide is available in Appendix I.

RSARA is a Windows-based system developed to facilitate characterizing analysis conditions and entering required data. The software main screen is shown in Figure 36.

#### **Software Capabilities**

RSARA was tailored to help airport stakeholders evaluate different RSA alternatives. The software has the following capabilities:

- Performs full risk assessment for multiple runways.
- Enters multiple obstacles to each RSA scenario.
- Characterizes different categories for obstacles.
- Defines and analyzes non-standard (non-rectangular) RSA geometry.
- Analyzes with standard and non-standard EMAS beds.
- Internally integrates operations and weather data from separate files.
- Automatically converts operations and weather data into parameters used by probability models.
- Includes database of aircraft with capability to add new or edit existing aircraft.
- Automatically computes runway criticality factor for each operation.
- Automatically corrects for required distances (landing and takeoff) based on elevation, temperature, wind, and runway surface condition.
- Generates analysis reports from software with summaries of following parameters:

- Average risk for each type of incident by runway, by RSA section, and total for the airport.
- The expected number of years to occur an accident for a user-defined annual traffic volume and growth rate.
- Percentage of operations subject to a probability higher than a user-defined target level of safety (TLS).
- Graphical outputs with the distribution of risk for each RSA and each type of event.

#### **Input Data**

Input data required to run the analysis include the following information:

- Sample of historical operations data (date and time, aircraft model, runway used, type of operation, etc.).
- Sample of historical weather data for the airport covering the period of sample of historical operations (wind, temperature, precipitation, visibility, etc.).
- Characteristics of runways (elevation, direction, declared distances).
- Characteristics of RSAs (geometry, type of surface, presence of EMAS, location, size and category of obstacles).
- General information (airport annual traffic volume, annual growth rate).

Much of the input information is arranged in table format. Operations and weather data are entered using Microsoft Excel templates with automatic checks for value ranges and data format. Figure 37 shows the program screen and template to input operations data.

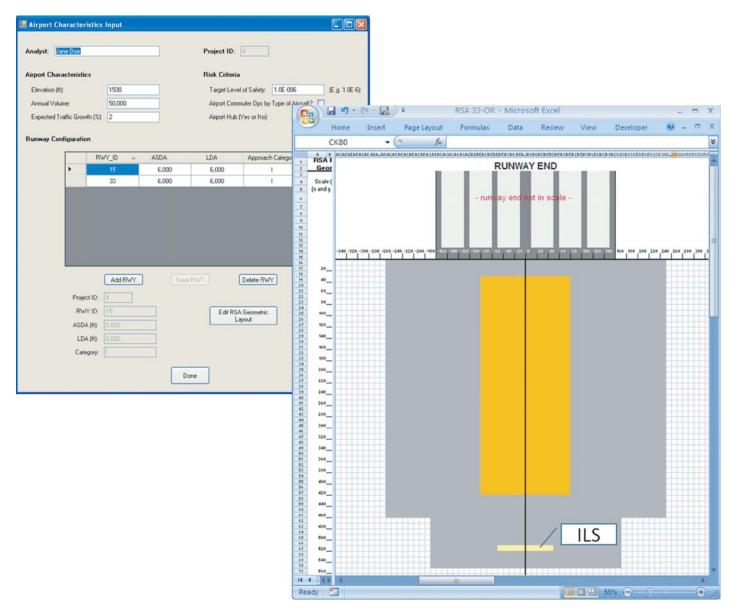

The template for drawing the RSA area for overrun and undershoot was created using Microsoft Excel. It consists of a canvas area formed by a matrix of cells. Each cell corresponds to a coordinate that is referenced to the center of the runway. The default coordinate grid is set at  $10 \times 10$  ft. If the RSA is larger than the available canvas, a new scale can be set at the top of the



Figure 36. RSARA—main program screen.

| HOD ID           | DATE&TIME          | RUNWAY                      | Arr/Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FAA_Code                                                                                                                                                                                                             | FLIGHT_Catego                                                                   | ~                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                    |            |
|------------------|--------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|
| 1                | 1/10/2006 12:03 AM | 15                          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A319                                                                                                                                                                                                                 | AIR                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                    |            |
| 2                | 1/10/2006 12:14 AM | 33                          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MD83                                                                                                                                                                                                                 | AIR                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                    |            |
| 3                | 1/10/2006 12:17 AM | 33                          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B752                                                                                                                                                                                                                 | AIR                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                    |            |
| 4                | 1/10/2006 12:19 AM | 15                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | Evample 1                                                                       | OD Input - Micr                                     | or off Even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                                                                    | 2 8        |
| 5                | 1/10/2006 12:21 AM | 33                          | Hame Inset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                    | 0 - 1      |
| 6                | 1/10/2006 12:26 AM | 33                          | H N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page Layout Formul                                                                                                                                                                                                   | as Data Restew                                                                  | W Devel                                             | )<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                                    | Sector and |
|                  |                    |                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                    | C                                                                               | D                                                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                                            | G                                                                  | н          |
| 7                | 1/10/2006 12:27 AM | 33                          | Documents and Settings\Admir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE&TIME RUN                                                                                                                                                                                                        | WAY_DESIGNATION                                                                 | BOUND                                               | FLIGHT_NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAA_Code                                                                                     | FLIGHT_Category                                                    | FLIGHT_Typ |
| 0                | 1/10/2000 12-20 AM | 22                          | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:03 AM                                                                                                                                                                                                     | 15                                                                              | A                                                   | ACA759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A319                                                                                         | AIR                                                                |            |
|                  |                    |                             | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:14 AM                                                                                                                                                                                                     | 33                                                                              | A                                                   | AAL1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MD83                                                                                         | AIR                                                                |            |
| tal number of re |                    |                             | 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:17 AM                                                                                                                                                                                                     | 33                                                                              | Flight Bou                                          | UAL225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8752                                                                                         | AIR                                                                |            |
| tal number of re | scords. 2000       |                             | 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:19 AM                                                                                                                                                                                                     | 15                                                                              | Please ent<br>either A fo                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A320                                                                                         | AIR                                                                |            |
|                  | _                  |                             | 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:21 AM                                                                                                                                                                                                     | 33                                                                              | arrivals or                                         | D for UAL159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8752                                                                                         | AIR                                                                |            |
|                  |                    |                             | 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:26 AM                                                                                                                                                                                                     | 33                                                                              | departure                                           | TAI563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A319                                                                                         | AIR                                                                |            |
|                  |                    | Create New                  | and the second sec |                                                                                                                                                                                                                      |                                                                                 | a second second second                              | and the second |                                                                                              |                                                                    |            |
|                  |                    | Create New<br>Input File    | 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10/06 12:27 AM                                                                                                                                                                                                     | 33                                                                              | D                                                   | CAL003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8744                                                                                         | AIR                                                                |            |
|                  |                    | Create New<br>Input File    | 8 7<br>9 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/10/06 12:27 AM<br>1/10/06 12:30 AM                                                                                                                                                                                 | 33<br>33                                                                        | D                                                   | CAL003<br>SIA001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8744<br>8744                                                                                 | AIR                                                                |            |
|                  |                    |                             | 8 7<br>9 8<br>10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM                                                                                                                                                             | 33<br>33<br>33                                                                  | D                                                   | CAL003<br>SIA001<br>TAI561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8744<br>8744<br>A320                                                                         | AIR<br>AIR<br>AIR                                                  |            |
|                  |                    | Input File                  | 8 7<br>9 8<br>10 9<br>11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:33 AM                                                                                                                                         | 33<br>33<br>33<br>33                                                            | D<br>D<br>D                                         | CAL003<br>SIA001<br>TAI561<br>CPA873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8744<br>8744<br>A320<br>8744                                                                 | AIR<br>AIR<br>AIR<br>AIR                                           |            |
|                  |                    | Input File<br>Edit Existing | 8 7<br>9 8<br>10 9<br>11 10<br>12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM                                                                                                                     | 33<br>33<br>33<br>33<br>33                                                      | D<br>D<br>D                                         | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8744<br>8744<br>A320<br>8744<br>8738                                                         | AIR<br>AIR<br>AIR<br>AIR<br>AIR                                    |            |
|                  |                    | Input File                  | 8 7<br>9 8<br>10 9<br>11 10<br>12 11<br>13 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM                                                                                                 | 33<br>33<br>33<br>33<br>33<br>33                                                | D<br>D<br>D<br>D                                    | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8744<br>8744<br>A320<br>8744<br>8738<br>8752                                                 | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR                             |            |
|                  |                    | Input File<br>Edit Existing | 8 7<br>9 8<br>10 9<br>11 10<br>12 11<br>13 12<br>14 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM                                                                             | 33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                    | D<br>D<br>D<br>D<br>D<br>D                          | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8744<br>8744<br>A320<br>8744<br>8738<br>8752<br>8738                                         | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR                      |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM<br>1/10/06 12:53 AM                                                         | 33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                        | D<br>D<br>D<br>D<br>D<br>D                          | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8744<br>8744<br>A320<br>8744<br>8738<br>8752<br>8738<br>MD83                                 | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR               |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14           16         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM<br>1/10/06 1:01 AM                                                          | 33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                        |                                                     | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530<br>AAR283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8744<br>8744<br>A320<br>8744<br>8738<br>8752<br>8738<br>MD83<br>8744                         | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR        |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14           16         15           17         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM<br>1/10/06 1:01 AM<br>1/10/06 1:02 AM                                       | 33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33      | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>A      | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530<br>AAR283<br>AWE879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8744<br>8744<br>A320<br>8744<br>8738<br>8752<br>8738<br>MD83<br>8744<br>A320                 | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14           16         15           17         16           18         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM<br>1/10/06 12:53 AM<br>1/10/06 1:02 AM<br>1/10/06 1:12 AM                   | 83<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>3 | D<br>D<br>D<br>D<br>D<br>D<br>D<br>A<br>A           | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530<br>AAR283<br>AWE879<br>LN689AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8744<br>8744<br>8744<br>8748<br>8738<br>8752<br>8738<br>MD83<br>8744<br>A320<br>C441         | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14           16         15           17         16           18         17           19         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/10/06 12:27 AM<br>1/10/06 12:33 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:48 AM<br>1/10/06 12:53 AM<br>1/10/06 1:01 AM<br>1/10/06 1:02 AM<br>1/10/06 1:12 AM<br>1/10/06 1:13 AM | 83<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>3 | D<br>D<br>D<br>D<br>D<br>D<br>D<br>A<br>A<br>A<br>D | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530<br>AAR263<br>AWE879<br>LN669AE<br>MXA145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8744<br>8744<br>A320<br>8744<br>8738<br>8752<br>8738<br>MD83<br>8744<br>A320<br>C441<br>A320 | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR |            |
|                  |                    | Input File<br>Edit Existing | 8         7           9         8           10         9           11         10           12         11           13         12           14         13           15         14           16         15           17         16           18         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/10/06 12:27 AM<br>1/10/06 12:30 AM<br>1/10/06 12:33 AM<br>1/10/06 12:34 AM<br>1/10/06 12:46 AM<br>1/10/06 12:46 AM<br>1/10/06 1:253 AM<br>1/10/06 1:02 AM<br>1/10/06 1:02 AM<br>1/10/06 1:12 AM<br>1/10/06 1:13 AM | 83<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>3 | D<br>D<br>D<br>D<br>D<br>D<br>D<br>A<br>A           | CAL003<br>SIA001<br>TAI561<br>CPA873<br>COA1743<br>NWA362<br>SCX398<br>AAL530<br>AAR283<br>AWE879<br>LN689AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8744<br>8744<br>8744<br>8748<br>8738<br>8752<br>8738<br>MD83<br>8744<br>A320<br>C441         | AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR<br>AIR |            |

*Figure 37. Example of input screen and template.* 



#### Figure 38. RSA characterization using Microsoft Excel.

canvas template. The user assigns a letter or number to each cell to define the type of surface or category of obstacle. After entering a code, the color of the cell will change according to the surface type or obstacle entered to facilitate the visualization of the drawing. Tables with the codes describing the surface types and obstacles available are provided in the template. Figure 38 shows an example of RSA defined with the tool.

#### **Output and Interpretation**

When the analyses are completed, the user may see the results using the Output option of the main menu. There are two types of results: runways or the consolidated results for the whole airport. Within each of these options, the user can view the results for risk of events taking place outside the RSA or view the analysis output for the risk of accidents. Each folder contains the risk estimates for each type of incident and individual operation and the total risk during landings and takeoffs. The results for each individual runway are provided in separate output Excel files. The summary table provides the average risk for each type of accident and expected number of years for an accident to occur. The accumulated risk distribution is provided in graphical form for each section of the RSA.

The results for the entire airport are provided in one output Excel file. The user must create the output files for each runway prior to creating the output file for the airport. An example presenting the summary of results for the whole airport is shown in Figure 39. The main table contains a summary of average risk levels for each type of incident and for all incidents. Risk levels are shown in terms of accident rates per number of operations and expected number of years to occur one accident. Additional

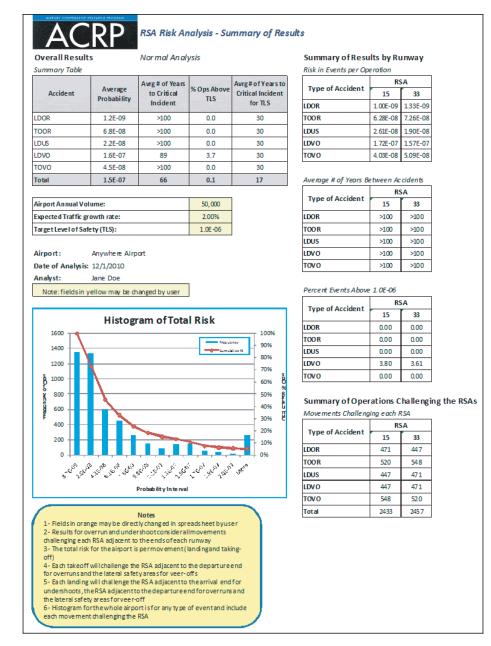



Figure 39. Example output summary.

tables are presented showing the average risk for each RSA section, the percentage of movements with higher risk, and the number of operations challenging each RSA section.

The first table contains three user-defined fields: the airport annual traffic volume, the expected annual traffic growth rate, and the TLS. These values reflect the options entered during the analysis input phase and may be modified by the user directly in the output spreadsheet. When these parameters are changed, the average number of years between incidents will change to reflect the new traffic volume estimated for future years. If the TLS is modified, the percentage of movements above the TLS will change automatically to reflect the new TLS value.

#### Software Field Test

Appendix G provides details of the plan to field test RSARA. The plan involved testing by eight volunteers from FAA staff, airport operators, university professors, industry representatives, and consultants. The volunteers received the installation software with the user's guide to perform analysis and recommend changes.

A questionnaire was prepared to gather comments from the volunteers, and their notes were used to improve the beta version of the software. During the trial period, the research team provided technical support by answering questions, solving installation problems, and fixing bugs.

# CHAPTER 6 Model Validation

The improved risk models were validated by comparing the results of the analysis for a sample of airports to their associated historical accident rates. The eight airports listed in Table 7 were selected using random stratified sampling techniques to run the analysis with the new models and analysis software; the results are compared to the actual rate of accidents at the selected airports. None of the selected airports were part of the NOD used to develop the risk models.

The analysis runs with the eight airports also served to test the software. To run the risk analysis, one year of historical operations data were obtained for each airport. Data for airports were collected and consolidated. Operations data were retrieved from the FAA Operations & Performance Data and Aeronautical Information Management Laboratory. The weather data were obtained from the National Oceanic and Atmospheric Administration (NOAA) database for the meteorological stations serving each airport.

Historical accident and incident information for the airport was obtained from the NTSB, AIDS, and ASRS databases. Although the analysis was conducted to obtain risk assessment estimates, information on frequency calculated in the analysis also was used to compare expected and actual frequency rates for each type of incident. Similarly, actual and estimated accident rates were compared to evaluate the need to make adjustments to the models. Table 8 presents the relevant accidents and incidents identified for the eight airports selected. RSA's and obstacles were characterized using satellite pictures from Google Earth, and RSA files were created for each runway.

Relevant traffic volume information from 1981 to 2009 was estimated from information available in the FAA Air Traffic Activity Data System (ATADS). Part of the annual air traffic volume was extrapolated to estimate the total volume for the sample period. An average annual growth rate of 5% was assumed for air traffic in the period between 1981 and 1999 when air traffic information was not available online. The volumes were adjusted to remove operations of aircraft with less than 5600 lb and other movements non-relevant to this study. The volume and the number of accidents and incidents were used to estimate the frequency rates and accident rates for each airport and type of event.

The analysis software proved to work well for each case study. There were no bugs identified during the software runs, and the results looked rational and within expected ranges for the individual airports.

Table 8 contains the events for each airport occurring during the analysis period. Figure 40 summarizes the total number of accidents and incidents occurring at the eight airports since 1981. The majority of the cases were landing veer-offs, and, for most types of events, the number of incidents was larger than the number of accidents. One notable exception was the case for TOORs. It is true that the number of cases is quite small for a sample of eight airports; however it is notable that there were fewer TOOR incidents compared to accidents. Approximately 50% of TOOR in the accident/incident database developed for this study were incidents, and it may be an indication of higher severity for TOOR. When comparing the location models for TOOR and LDOR, the percentage of aircraft stopping at any given distance is larger during the takeoff, compared to landing overruns.

A summary of analysis results is presented in Table 9. More details on the analysis and additional results are presented in Appendix H. It is important to note that the RSA configurations used for the analysis at Yeager Airport were representative of conditions prior to the recent improvements that included the extension of RSA's and implementing EMAS. The main reason for using these data for Yeager is that the plan was to compare the analysis results with historical accident/incident rates. As expected, risk for Yeager was the highest because its RSAs before the recent improvements were considerably smaller than current FAA standards.

For simplicity, all analyses were conducted using the average annual operations during the past 10 years. The expected number of years between critical events is based

| State | Airport Name                   | Location ID | City          | Hub |
|-------|--------------------------------|-------------|---------------|-----|
| FL    | Miami International            | MIA         | Miami         | L   |
| AK    | Ted Stevens Anchorage          | ANC         | Anchorage     | М   |
|       | International                  |             |               |     |
| MO    | Lambert-St Louis International | STL         | St Louis      | М   |
| WA    | Spokane International          | GEG         | Spokane       | S   |
| SD    | Joe Foss Field                 | FSD         | Sioux Falls   | N   |
| WV    | Yeager                         | CRW         | Charleston    | N   |
| AZ    | Deer Valley International      | DVT         | Phoenix       | GA  |
| FL    | Ft Lauderdale Executive        | FXE         | Ft Lauderdale | GA  |

 Table 7. List of airports for model/software validation.

| Table 8. | Accidents ar | d incidents a | at selected | airports. |
|----------|--------------|---------------|-------------|-----------|
|----------|--------------|---------------|-------------|-----------|

| Date       | Country | City/State          | Source   | Event Type | Event Class | Aircraft<br>ICAO Code | Airport<br>Code |
|------------|---------|---------------------|----------|------------|-------------|-----------------------|-----------------|
| 07/01/1981 | US      | Saint Louis, MO     | NTSB     | LDVO       | Incident    | DC6                   | STL             |
| 07/24/1981 | US      | Charleston          | NTSB     | LDUS       | Accident    | BE60                  | CRW             |
| 10/15/1981 | US      | Saint Louis, MO     | AIDS     | LDVO       | Incident    | DC6                   | STL             |
| 2/24/1983  | US      | Anchorage, AK       | AIDS     | LDVO       | Incident    | LJ24                  | ANC             |
| 10/26/1983 | US      | Saint Louis, MO     | NTSB     | LDUS       | Accident    | CV3                   | STL             |
| 12/23/1983 | US      | Anchorage, AK       | NTSB     | TOOR       | Accident    | DC10                  | ANC             |
| 9/28/1987  | US      | Saint Louis, MO     | AIDS     | LDUS       | Incident    | MD80                  | STL             |
| 12/26/1987 | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | AC11                  | FXE             |
| 10/14/1988 | US      | Anchorage, AK       | AIDS     | LDVO       | Incident    | YS11                  | ANC             |
| 10/23/1989 | US      | Anchorage, AK       | MITRE    | LDOR       | Incident    | B741                  | ANC             |
| 1/6/1990   | US      | Miami, FL           | 4-01NTSB | TOOR       | Accident    | L29A                  | MIA             |
| 02/17/1991 | US      | Spokane, WA         | NTSB     | LDVO       | Accident    | MU2B                  | GEG             |
| 03/11/1993 | US      | Saint Louis, MO     | NTSB     | LDVO       | Accident    | DC93                  | STL             |
| 8/28/1993  | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | LJ23                  | FXE             |
| 08/29/1993 | US      | Charleston          | NTSB     | LDOR       | Accident    | MU2B                  | CRW             |
| 7/27/1994  | US      | Sioux Falls, SD     | AIDS     | LDVO       | Incident    | T18                   | FSD             |
| 11/29/1994 | US      | Spokane, WA         | AIDS     | TOVO       | Incident    | B731                  | GEG             |
| 06/23/1995 | US      | Miami, FL           | NTSB     | LDVO       | Accident    | C402                  | MIA             |
| 11/19/1995 | US      | Anchorage, AK       | AIDS     | LDUS       | Incident    | C441                  | ANC             |
| 12/19/1995 | US      | Saint Louis, MO     | AIDS     | LDVO       | Incident    | DC91                  | STL             |
| 9/17/1996  | US      | Miami, FL           | AIDS     | TOVO       | Incident    | BE18                  | MIA             |
| 11/15/1996 | US      | Sioux Falls, SD     | MITRE    | LDOR       | Incident    | DC91                  | FSD             |
| 8/7/1997   | US      | Miami, FL           | 4-01NTSB | TOOR       | Accident    | DC85                  | MIA             |
| 2/19/1999  | US      | Miami, FL           | 4-01ASRS | LDUS       | Incident    | A30B                  | MIA             |
| 10/15/2000 | US      | Anchorage, AK       | NTSB     | TOOR       | Incident    | B741                  | ANC             |
| 10/16/2000 | US      | Saint Louis, MO     | AIDS     | LDVO       | Incident    | MD80                  | STL             |
| 10/20/2000 | US      | Saint Louis, MO     | ASRS     | LDOR       | Incident    | MD82                  | STL             |
| 04/07/2001 | US      | Anchorage, AK       | AIDS     | TOVO       | Incident    | B190                  | ANC             |
| 01/01/2002 | US      | Miami, FL           | 4-01NTSB | LDOR       | Incident    | MD83                  | MIA             |
| 06/15/2002 | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | SW3                   | FXE             |
| 12/01/2002 | US      | Spokane, WA         | AIDS     | LDOR       | Incident    | DH8A                  | GEG             |
| 12/20/2002 | US      | Spokane, WA         | 4-01ASRS | LDOR       | Incident    | DH8A                  | GEG             |
| 8/16/1999  | US      | Fort Lauderdale, FL | MITRE    | LDVO       | Accident    | CL60                  | FXE             |
| 4/17/2003  | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | SBR1                  | FXE             |
| 6/12/2003  | US      | Fort Lauderdale, FL | AIDS     | TOOR       | Incident    | LJ24                  | FXE             |
| 8/9/2003   | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | SBR1                  | FXE             |
| 2/20/2004  | US      | Fort Lauderdale, FL | 4-01NTSB | LDOR       | Accident    | LJ25                  | FXE             |
| 3/31/2004  | US      | Fort Lauderdale, FL | NTSB     | LDVO       | Accident    | C402                  | FXE             |
| 7/19/2004  | US      | Fort Lauderdale, FL | 4-01NTSB | LDOR       | Accident    | LJ55                  | FXE             |
| 09/08/2004 | US      | Charleston          | NTSB     | TOOR       | Accident    | C402                  | CRW             |
| 12/1/2005  | US      | Sioux Falls, SD     | AIDS     | LDVO       | Incident    | SW4                   | FSD             |
| 6/6/2006   | US      | Fort Lauderdale, FL | AIDS     | TOVO       | Incident    | SW3                   | FXE             |
| 2/4/2007   | US      | Miami, FL           | NTSB     | LDVO       | Incident    | DC87                  | MIA             |
| 11/1/2007  | US      | Fort Lauderdale, FL | AIDS     | LDOR       | Incident    | GLF2                  | FXE             |
| 1/27/2008  | US      | Spokane, WA         | AIDS     | LDOR       | Incident    | B731                  | GEG             |
| 5/23/2008  | US      | Fort Lauderdale, FL | AIDS     | LDVO       | Incident    | SBR1                  | FXE             |
| 01/19/2010 | US      | Charleston          | NTSB     | TOOR       | Accident    | CRJ2                  | CRW             |

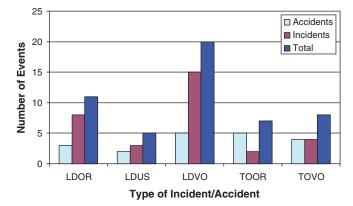



Figure 40. Summary of accidents and incidents at surveyed airports since 1981.

on the average annual volume of operations during the past 10 years and the average level of risk for the entire airport, as shown in column 5 of Table 9. A "critical event" is the focus of the analysis, and it may be an incident or an accident. When running the analysis for risk, a critical event is considered a single accident or an event in which substantial damage to the aircraft and/or injury to passengers is the consequence.

The most critical runway end is identified based on the risk of overruns and undershoots only. This risk is associated with the operations challenging the RSA adjacent to the runway end. The runway end is identified based on the approach end of the runway. The last two columns of Table 9 contain the incident type with the highest chance of occurring and the associated runway.

The validation effort was divided in two steps. The first step was to determine that the eight airports selected were representative of conditions across the United States. Although this is not an analysis required for validating the approach, the comparison helped gain confidence of the applicability of the risk assessment to other airports. Also, the estimated frequency rates of the airport sample were compared to the actual frequency for the eight airports. The second step was to compare the risk levels estimated from the analysis with the actual risk rates for the sample of airports.

#### Validation of Frequency Models

Figure 41 presents incident frequency rates for each type of incident and for three different estimates: the historical frequency rate in the United States, the actual incident rate for the sample of eight airports, and the estimated frequency rate for the sample of airports. The rates for the sample were calculated based on the weighted average for the eight airports. The actual rate represents the total number of incidents from 1981 to 2009 divided by the total volume of operations during the same period. The figure shows these results in both graphical and tabular format. Some differences were expected given the small sample size of eight airports surveyed.

The results presented in Figure 41 demonstrate excellent agreement between the accident rates for the sample of airports and the historical rate for all the airports in the United States. The results concur that the sample of airports is representative of conditions for the population of airports in the United States. The largest difference was found for landing veer-offs; however, the incident rate, particularly for Fort Lauderdale Executive Airport, was unusually high during the analysis period.

The second conclusion drawn from these results is that the actual frequency rates for the eight airports agreed with the estimated frequency rates for this sample. It is important to note that frequency rates involve both accidents and incidents, with no distinction for the level of severity.

The plot in Figure 41 also shows excellent agreement between actual and estimated frequency values for each type of incident. Therefore, there is no need to recalibrate the frequency models or to apply adjustment factors.

LDVO

TOVO

LDVO

24

07I

30

06/24

07L/25R

12/30

| Airport | port State Volum | Average Annual<br>Volume of Ops<br>for Past 10 yrs | No. of<br>Runways | Avrg<br>Airport | Avrg # of Years<br>for One Accident | Highest Risk<br>Runway<br>End** | Airport Most<br>Incident and<br>Runway | Associated |
|---------|------------------|----------------------------------------------------|-------------------|-----------------|-------------------------------------|---------------------------------|----------------------------------------|------------|
|         | (in 2009)        | , i                                                | Risk              | to Occur        | End**                               | Incident Type                   | Rwy                                    |            |
| ANC     | AK               | 293K (290K)                                        | 3                 | 2.1E-07         | 16                                  | 14                              | LDVO                                   | 14/32      |
| CRW*    | WV               | 50K (71K)                                          | 2                 | 5.5E-06         | 17                                  | 15                              | LDOR                                   | 15         |
| FSD     | SD               | 69K (86K)                                          | 2                 | 3.1E-07         | 38                                  | 15                              | LDOR                                   | 15         |
| FXE     | FL               | 169K (261K)                                        | 2                 | 8.3E-07         | 13                                  | 31                              | LDOR                                   | 31         |
| GEG     | WA               | 82K (81K)                                          | 2                 | 4.1E-07         | 33                                  | 21                              | LDVO                                   | 03/21      |

28

15

19

1.8E-07

3.7E-07

1.4E-07

Table 9. Summary of analysis results for airports selected for validation.

4

2

4

\* Risk estimated for condition before RSA improvements completed in 2007.

\*\* Runway end with highest probability of overruns and undershoots only.

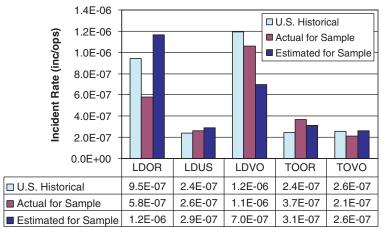
209K (226K)

153K (376K)

380K (384K)

\*\*\* Incident with highest probability of occurrence.

STL


DVT

MIA

MP

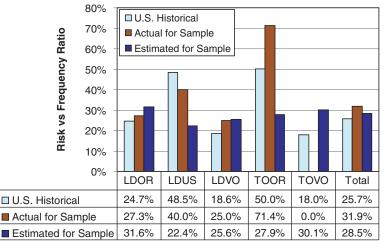
AZ

FL



Type of Incident

Figure 41. Actual frequency of incidents for sample of airports compared to historical rates.


#### Validation of Risk Model

The second part of the validation effort consisted of the comparison of actual risk rates with those estimated for the sample of eight airports. The estimated risk is associated with the likelihood of an accident, rather than an incident. According to NTSB, accident is defined as an occurrence associated with the operation of an aircraft where as a result of the operation, any person receives fatal or serious injury or any aircraft receives substantial damage. This is also the definition used in this report to characterize an aircraft accident.

Data presented in Table 8 contain the accidents that took place at the eight sample airports from 1981 to 2009. The ratio between the actual number of accidents in that period divided by the volume of landings or takeoffs at the airport provides the actual rate for each type of event. The total number of accidents of any type divided by the total number of operations in the period evaluated is the actual accident rate for the airport.

Comparison of the actual rate for each type of accident at each airport is not very helpful because the number of events is relatively low, given the sample size of airports used in the validation. Therefore, the analysis consisted of comparing the rates for the whole sample of eight airports. The comparison is made for each type of accident and for the total accident rate.

The first analysis compared the proportion between accidents and the total number of incidents. This was an important analysis to validate the consequence approach developed in this study. Three types of ratios were calculated for each type of accident: the estimated ratio for the sample of eight airports, the actual ratio for the sample, and the historical ratio in the United States. The results are shown in Figure 42 in both graphical and tabular form.



Type of Accident

*Figure 42. Percentage of accidents to the total number of incidents.* 

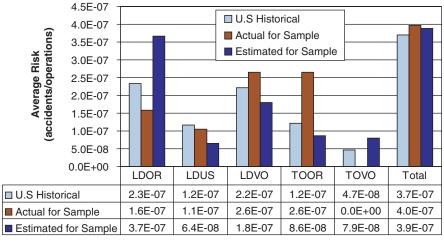





Figure 43. Percentage of accidents to the total number of incidents.

Again, the results are in excellent agreement with the exception of the ratio for TOVO since none of the airports included in the sample had this type of incident. This can be attributed to chance, since the estimate is in good agreement with the historical level in the United States. The number of accidents is very low when using only eight airports, and larger variations were expected when comparing the parameters based on the number of accidents for the sample. The last analysis for validation was the comparison of actual and estimated risk levels for the sample of airports. The results are presented in Figure 43.

Again, the results between estimated and actual values are in excellent agreement. The validation study demonstrates the applicability of the approach and the models developed in this study.

### CHAPTER 7

# Conclusions and Recommendations for Further Research

RSA standards have changed over the years to improve safety, but many existing airports were built under older, less demanding standards. To comply with the current standards, some airports face enormous challenges due to physical, economical, and environmental restrictions.

Safety levels associated with the protection provided by RSA's can be different from airport to airport. Two airports with similar runway lengths and RSA configurations may have very different conditions related to operations and weather. Factors like aircraft model, runway elevation, visibility conditions, and availability of NAVAID's also have an impact on the risk of each operation.

When airports do not comply with the RSA standards and there is a need to improve existing conditions, it is necessary to evaluate the alternatives that can be most effective to reduce risk and compare the safety levels achieved and the associated costs for each option.

The objective of this study was to develop a software tool that can be used for risk assessments associated with incidents occurring in the RSA.

The basis of the approach used in this study was presented in *ACRP Report 3*. Analysis capabilities were enhanced by improving the risk models to address the analysis of runway declared distances, the use of EMAS, and incorporating the approach to evaluate the presence of obstacles in or in the vicinity of the RSA. In addition, it is now possible to evaluate the risk of aircraft veer-off in the lateral sections of the RSA. The result is a powerful tool to help the aviation industry perform risk assessments.

The major goals of this study can be summarized as follows:

- 1. Update the *ACRP Report 3* accident/incident database to incorporate aircraft overrun and undershoot accidents and incidents occurring after 2006 and include runway veer-off events occurring since 1980.
- 2. Develop risk models for frequency and location for each type of incident.

- 3. Develop a practical approach to assess the impact of: runway distance available on the probability of overruns, undershoots, and veer-offs; the availability of EMAS as an alternative to standard RSAs; the use of declared distances; and the presence of obstacles in the RSA or its vicinity.
- 4. Develop user-friendly software that incorporates the methodology and models developed as a practical tool that airport stakeholders may use to evaluate RSA alternatives.
- 5. Field test the software developed and validate the new tool and models based on data gathered according to an airport survey plan.

Each of these goals was accomplished, and the major achievements are presented below.

#### **Major Achievements**

#### Extended Database of Accidents and Incidents

The database developed under the study presented in *ACRP Report 3* included 459 aircraft overrun and undershoot accidents and incidents occurring from 1980 to 2006. The database was expanded significantly to 1414 events with the inclusion of overruns and undershoots occurring from 2006 to 2009, and the addition of veer-off events and information provided by MITRE.

Additional events were identified using a manual search of the FAA incident databases and the accidents and incidents involving GA aircraft with MTOW between 5,600 and 12,000 lb, which had been excluded from the *ACRP Report 3* study.

The comprehensive database is organized with editing and querying capabilities, and information is available according to different categories including synopsis of the event, aircraft involved, airport and weather characteristics, level of consequences, wreckage location, and major causal and contributing factors.

#### **Development of Improved Risk Models**

The models presented in *ACRP Report 3* were improved, and new ones to address veer-offs were developed. Five sets of frequency and location models were developed, including models for LDOVs, LDVOs, LDUSs, TOORs, and TOVOs. These types of events constitute the great majority of aircraft incidents that challenge the runway RSA.

New data and new factors were incorporated into the new models. Two of the most important ones were the runway criticality factor and the tail/head wind component. The runway criticality factor was defined as the ratio between the runway distance required and the runway distance available for the operation. The higher this value is, the smaller is the safety margin for the operation, and it represents the relationship between the runway and aircraft performance.

#### **Development of Approach to Evaluate EMAS**

EMAS has proved to be a successful alternative when the RSA area available at the runway ends is shorter than the standard. The improved deceleration capability provided by EMAS is an important consideration when performing an RSA analysis.

The approach presented in *ACRP Report 3* did not address the possibility of using EMAS; ACRP 04-08 filled this gap. A simplified approach based on data provided by Engineered Arresting Systems Corporation (ESCO), the manufacturer of EMAS, was developed and incorporated into the software. The approach used can help airport stakeholders verify the safety benefits of using EMAS beds, even when non-standard configurations are used.

### Development of Approach to Assess Impact of Declared Distances

Statistics were used to demonstrate that the likelihood of landing and takeoff incidents may depend on the safety margin available for the operation relative to the runway distance required by the aircraft.

In this project, the estimate of frequency of incidents incorporates a runway criticality factor defined as the ratio between the runway distance required and the distance available. Although the runway distance can only be calculated using the actual aircraft weight, and this information is difficult to obtain, other factors may be used for modeling. Some of these factors include the basic distance required for standard conditions, the runway elevation, the air temperature, the wind, and the runway surface conditions. In this project, the landing distance required is estimated based on each of those factors for the specific type of aircraft.

The incorporation of these factors into the frequency models is used to help assess the impact of the declared runway distances on risk of overruns, veer-offs, and undershoots.

#### **Development of Software Tool**

The approach and the improved models were integrated into analysis software for risk assessment of RSA. The tool, called RSARA, is user-friendly and practical, and allows the user to consider each of the factors impacting RSA risk.

The software works as a simulation tool to estimate risk for each operation from an annual sample of operations for an airport. The historical sample data include flight operations data, like aircraft model, runway used, and the type of operation, as well as the weather conditions to which each of these operations was subjected.

Within the software, the definition of RSA areas is a very simple process based on Microsoft Excel spreadsheets. The procedure is as easy as drawing the RSA in a plan view and defining the RSA surface type: unpaved, paved, or EMAS.

The output is comprehensive, and risk estimates are provided by type of incident, runway, and RSA section challenged. Risk results are provided in terms of accidents per number of operations or the expected number of years to occur an accident, and are compatible with the criteria set by the FAA.

Histograms of risk help users identify the percentage of operations subject to risk levels higher than a desired TLS.

#### Model and Software Validation

The risk models were developed and calibrated based on a worldwide dataset of accidents and incidents. A second effort was conducted to verify and validate the models using NOD and RSA conditions for eight airports that were not used to create the NOD used to develop the models.

The verification was a key step to demonstrate the applicability of the innovative approach and models developed in this research. The comparison between estimated and actual frequency and risk rates showed excellent agreement, despite the small sample of airports used in this study. Analysis output for the eight airports and their historical records of accidents and incidents helped to prove the validity of the approach and analysis software.

The volunteers selected to test the models provided feedback to the research team that was used to improve software and eliminate bugs.

#### Limitations

Although an intensive effort was made to develop a very comprehensive tool, there are some limitations that users should be aware of. Some of those limitations are related to data availability, and some are related to the computer time to perform an analysis.

One important limitation is that the tool is helpful for planning purposes only. Neither the models nor the software should be used to estimate risk during real-time operations. Only aircraft manufacturers can use actual aircraft data during operations to estimate actual aircraft performance.

The models and the approach were developed using actual data from accident and incident reports, and the models are simply based on evidence gathered from that type of information. For example, to estimate the runway distance required, a basic distance for the type of aircraft and model was used and corrected for temperature, elevation, wind, and surface characteristics. Wind corrections are considered to be average adjustments, and surface conditions are estimated based on weather conditions only, rather than relying on actual runway friction.

It was not possible to incorporate the touchdown location or the approach speed during landing. These are important factors that may lead to accident, but there are no means to account for these factors, except for assuming average values with a certain probability distribution that will lead to some level of model uncertainty.

Additional simplifications were necessary to address the interaction of incidents with existing obstacles. In many cases, the pilot is able to have some directional control of the aircraft and avoid some obstacles. The approach simply assumes that the aircraft location is a random process and the deviation from the runway centerline follows a normal probability distribution and that, during overruns and undershoots, the aircraft follows a path that is parallel to the runway centerline.

One major limitation to obtain more accurate models and estimates is the difficulty in accounting for human factors. Some type of human error was present in the majority of the events reported, and this factor is reflected as a component of the model error.

Also, obstacle categories were defined according to the maximum speed to avoid an accident with substantial damage to the aircraft and possibly injuries to its occupants. The classification was defined in this project using engineering judgment and assuming that consequences depend only on the collision speed and the area of the aircraft that has collided with the obstacle. Again, only engineering judgment was used to classify different types of obstacles according to the categories.

#### **Recommendations for Future Work**

#### **Extend Analysis for Non-RSA Areas**

Even with its limitations, the approach presented in this report is quite robust for the analysis of RSA. It takes into consideration many local factors and specific conditions to provide estimates of risk.

Still, the analysis presented can only cover the areas in the immediate vicinity of the runway. The development of a riskbased methodology to evaluate land use compatibility and third-party risk could be very helpful to support State requirements and planning efforts. The approach can be similar to the one presented in this study—using evidence of aircraft accidents in the vicinities of airports to develop risk models based on causal and contributing factors to aircraft accidents. The study should address the risk of accidents in areas within a 10-mile radius of the runway.

The methodology should consider local factors, historical operation conditions for the airport, and the type of land use for specific regions near the airport runways. The recommended study would improve the capability of land use committees and airport operators to assess third-party risk associated with aircraft accidents in the vicinity of airports.

The approach should be rational, non-prescriptive, and provide a quantitative assessment of third-party risk associated with aircraft operations at a specific airport. The study should associate aircraft operations with existing runway and environmental conditions, and aircraft type for a specific airport. Thus, the results of such a study would help decision makers to evaluate alternatives and associated safety benefits.

#### Development of Risk Tool for Airspace Analysis in Vicinity of Runways

The RSA analysis methodology and software presented in this study can only address the ground roll phase of operation; however, aircraft have both lateral and vertical deviations from their nominal flight path during landing and takeoff operations.

Currently, the aviation industry still relies on the Collision Risk Model (CRM) developed in the 1960s with very limited data to evaluate risk during instrument approaches during the non-visual segment and missed approach phases. The CRM has many limitations and does not cover all phases of the flight and types of approach. Only data for precision approach Categories I and II can be evaluated using the existing model. There is a need to have an updated CRM that can be used to prioritize risk mitigation actions associated with obstacles in the vicinity of the runway.

Currently, the FAA is developing a tool called Airspace Simulation and Analysis Tool (ASAT) that has comprehensive capabilities and accounts for aircraft performance, NAVAIDs, environmental conditions, terrain, wake turbulence, and human factors. However, the tool is not available to other airport stakeholders.

The improved tool should have the capability to assess risk associated with fixed or movable obstacles when they are very close to the runway. It should address all types of approach (visual, non-precision, precision, and possibly global positioning system [GPS] approach technology). Many airports would benefit from such a tool for safety management associated with the presence of obstacles.

### References

- AENA, "Operation of A-380 Aircraft on Alternate Aerodrome Sporadically," *Report Code EXA 34*, AENA, *Aeropuertos Espanoles y Navegacion Aerea*, Division of Operations, Infrastructure and Apron Department, April 2005.
- Annual Review of Aircraft Accident Data, U.S. Air Carrier Operations, Calendar Year 2005, National Transportation Safety Board, NTSB/ ARC-09/01, PB2009-106372, Notation 7502F, March 9, 2009.
- Ash, A., and M. Schwartz, "R2: a Useful Measure of Model Performance when Predicting a Dichotomous Outcome," *Statistics in Medicine*, 18(4), 1999, pp. 375–384.
- ATSB, "Runway Excursions—Part 1: A Worldwide Review of Commercial Jet Aircraft Runway Excursions," Australian Transport Safety Board, Aviation Research and Analysis, AR-2008-018(1), Final Report, 2009.
- Ayres, Manuel Jr., et al. *ACRP Report 1: Safety Management Systems for Airports, Volume 2: Guidebook,* Transportation Research Board of the National Academies, Washington, DC, 2009.
- Boeing, "Commercial Aircraft Design Characteristics—Trends and Growth Projections," International Industry Working Group (IIWG), 5th Ed., January 2007.
- Boeing, "Statistical Summary of Commercial Jet Airplane Accidents, Worldwide Operations, 1959–2010," July 2010.
- David, R., Location of Aircraft Accidents/Incidents Relative to Runways. DOT/FAA/AOV 90-1. Office of Safety Oversight, Federal Aviation Administration, Washington DC, 1990.
- Eddowes, M., J. Hancox and A. MacInnes, "Final Report on the Risk Analysis in Support of Aerodrome Design Rules," AEAT/RAIR/ RD02325/R/002 Issue 1, A Reported Produced for the Norwegian Civil Aviation Authority, December 2001, 202 pp.

- Enders, J., Dodd, R., Tarrel, R., Khatwa, R., Roelen, A., Karwal, A. "Airport Safety: A Study of Accidents and Available Approach-and-Landing Aids." *Flight Safety Digest*, Flight Safety Foundation, VA, March 1996.
- FAA AC 150/5200-37, Introduction to Safety Management Systems (SMS) for Airport Operators, U.S. Department of Transportation, Federal Aviation Administration, Washington, D.C., February 2007.
- FAA AC 150/5300-13, Airport Design, U.S. Department of Transportation, Federal Aviation Administration, September 1989.
- FAA Order 5200.11, FAA Airports (ARP) Safety Management System, August 2010.
- FAA Order 5200.8, Runway Safety Area Program, October 1999.
- Flight Safety Foundation (FSF), "Reducing the Risk of Runway Excursions," *Report of the Runway Safety Initiative*, May 2009.
- Hall, Jim, et al. ACRP Report 3: Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas, Transportation Research Board of the National Academies, Washington, DC, 2008.
- Hosmer, D., and S. Lemeshow, *Applied Logistic Regression*. John Wiley & Sons, Hoboken, 2000.
- Wong, D. K. Y., Appleyard, A., Caves, R. and Pitfield, D., "The Development of Models of the Frequency of Aircraft Accidents Near Airports," presented at 9th ATRS World Conference, Rio de Janeiro, Brazil, July 2005.
- Wong, D. K. Y., D. E. Pitfield, R. E. Caves and A. J. Appleyard, *The Development of Aircraft Accident Frequency Models*, Loughborough University, Loughborough, Leicestershire, United Kingdom, 2006, 8 pp.
- Wong, D. K. Y., The Modeling of Accident Frequency Using Risk Exposure Data for the Assessment of Airport Safety Areas, Ph.D. dissertation, University of Loughborough, Leicestershire, United Kingdom, 2007.

# Abbreviations and Acronyms

| AAIB   | UK Air Accidents Investigation Branch                                  |
|--------|------------------------------------------------------------------------|
| AAIU   | Ireland Air Accident Investigation Unit                                |
| ACRP   | Airport Cooperative Research Program                                   |
| ADG    | Airplane Design Group                                                  |
| ADREP  | ICAO Accident/Incident Data Reporting                                  |
| ASDI   | Aircraft Situation Display to Industry                                 |
| AIDS   | FAA Accident/Incident Data System                                      |
| AIP    | Airport Improvement Program                                            |
| ALS    | Approach Lighting System                                               |
| ASAT   | Airspace Simulation and Analysis Tool                                  |
| ASPM   | Aviation System Performance Metrics                                    |
| ASRS   | FAA/NASA Aviation Safety Reporting System                              |
| ATADS  | Air Traffic Activity Data System                                       |
| ATC    | Air Traffic Control                                                    |
| ATSB   | Australian Transport Safety Bureau                                     |
| BEA    | Bureau d'Enquêtes et d'Analyses pour la Sécurité de l'Aviation Civile  |
| CCFD   | Complementary Cumulative Frequency Distribution                        |
| CCPD   | Complementary Cumulative Probability Distribution                      |
| CFR    | Code of Federal Regulations                                            |
| CIAIAC | Comisión de Investigación de Accidentes e Incidentes de Aviación Civil |
| CRM    | Collision Risk Model                                                   |
| EMAS   | Engineered Material Arresting System                                   |
| ESCO   | Engineered Arresting Systems Corporation                               |
| FAA    | Federal Aviation Administration                                        |
| FAR    | Federal Aviation Regulation                                            |
| FHA    | Functional Hazard Analysis                                             |
| GA     | General Aviation                                                       |
| GPS    | Global Positioning System                                              |
| ICAO   | International Civil Aviation Organization                              |
| ISO    | International Standards Organization                                   |
| LDOR   | Landing Overrun                                                        |
| LDUS   | Landing Undershoot                                                     |
|        |                                                                        |

| LDVO   | Landing Veer-off                                        |
|--------|---------------------------------------------------------|
| MTOW   | Maximum Takeoff Weight                                  |
| NASA   | National Aeronautics and Space Administration           |
| NASB   | Netherlands Aviation Safety Board                       |
| NAVAID | Navigational Aids                                       |
| NOAA   | National Oceanic and Atmospheric Administration         |
| NOD    | Normal Operations Data                                  |
| NTSB   | National Transportation Safety Board                    |
| NTSC   | Indonesia National Transportation Safety Committee      |
| RLF    | Runway Length Factor                                    |
| ROC    | Receiver Operating Characteristic                       |
| ROFA   | Runway Object Free Area                                 |
| RSA    | Runway Safety Area                                      |
| RSARA  | Runway Safety Area Risk Assessment (software tool)      |
| TAIC   | New Zealand Transport Accident Investigation Commission |
| TOOR   | Takeoff Overrun                                         |
| TLS    | Target Level of Safety                                  |
| TOVO   | Takeoff Veer-off                                        |
| TRB    | Transportation Research Board                           |
| TSB    | Transportation Safety Board of Canada                   |
|        |                                                         |

### Definitions

Acceptable Level of Risk: likelihood of an event when probability of occurrence is small, whose consequences are so slight, or whose benefits (perceived or real) are so great, that individuals or groups in society are willing to take or be subjected to the risk that the event might occur.

Accident: an unplanned event or series of events that results in death, injury, or damage to, or loss of, equipment or property.

**Consequence:** the direct effect of an event, incident, or accident. In this study it is expressed as a health effect (e.g., death, injury, exposure) or property loss.

**Fatal Injury:** any injury that results in death within 30 days of the accident.

**Hazard:** the inherent characteristic of a material, condition, or activity that has the potential to cause harm to people, property, or the environment.

**Hazard Analysis:** the identification of system elements, events or material properties that lead to harm or loss. Hazard analysis may also include evaluation of consequences from an event or incident.

**Hull Loss:** airplane totally destroyed or damaged and not repaired.

**Incident:** a near miss episode, malfunction, or failure without accident-level consequences that has a significant chance of resulting in accident-level consequences.

**Likelihood:** expressed as either a frequency or a probability. Frequency is a measure of the rate at which events occur over time (e.g., events/year, incidents/year, deaths/year). Probability is a measure of the rate of a possible event expressed as a fraction of the total number of events (e.g., one-in-ten-million, 1/10,000,000, or  $1 \times 10$ -7).

**Major Accident:** an accident in which any of three conditions is met: the airplane was destroyed; or there were multiple fatalities; or there was one fatality and the airplane was substantially damaged.

**METAR:** aviation routine weather report.

**Nonconformity:** non-fulfillment of a requirement. This includes but is not limited to non-compliance with Federal regulations. It also includes an organization's requirements, policies, and procedures, as well as requirements of safety risk controls developed by the organization.

**Overrun or Overshoot:** a departure of the aircraft from the end of the intended landing runway surface.

**Quantitative Risk Analysis:** incorporates numerical estimates of frequency or probability and consequence.

**Risk:** the combination of the likelihood and the consequence of a specified hazard being realized. It is a measure of harm or loss associated with an activity.

**Risk Analysis:** the study of risk in order to understand and quantify risk so it can be managed.

**Risk Assessment:** determination of risk context and acceptability, often by comparison to similar risks.

**Runway Criticality:** term introduced in this study to represent the relationship between the runway distance required by a given aircraft and specific operational conditions, and the runway distance available for that operation (landing or takeoff). Runway criticality is represented mathematically by the ratio between the runway distance required and the runway distance available. A higher ratio means a lower safety margin and greater operation criticality.

**Safety:** absence of risk. Safety often is equated with meeting a measurable goal, such as an accident rate that is less than an acceptable target. However, the absence of accidents does not ensure a safe system. To remain vigilant regarding safety, it is necessary to recognize that just because an accident has not happened, it does not mean that it cannot or will not happen.

**Safety Management System:** the formal, top-down businesslike approach to managing safety risk. It includes systematic procedures, practices, and policies for the management of safety (including safety risk management, safety policy, safety assurance, and safety promotion).

**Safety Risk Management:** the systematic application of policies, practices, and resources to the assessment and control of risk affecting human health and safety and the environment. Hazard, risk, and cost/benefit analysis are used to support development of risk reduction options, program objectives, and prioritization of issues and resources.

**Substantial Damage:** damage or failure that adversely affects the structural strength, performance, or flight characteristics

of the aircraft, and that would normally require major repair or replacement of the affected component.

**Target Level of Safety (TLS):** the degree to which safety is to be pursued in a given context, assessed with reference to an acceptable or tolerable risk.

**Undershoot:** an event when the aircraft lands short of a runway or planned landing spot.

**Veer-off:** an aircraft running off the side of the runway during takeoff or landing roll.

**Worst Credible Condition:** the most unfavorable conditions or combination of conditions that it is reasonable to expect will occur.

A-1

### APPENDIX A

## **Functional Hazard Analysis Results**

#### Introduction

As described in the body of this report, one of the subtasks of this project was to carry out a functional hazard analysis (FHA) for aircraft overruns, undershoots, and veer-offs based on information gathered in the literature review. The objective of this subtask was to identify the most relevant factors associated with such events to support the data collection effort for accidents and incidents. Identifying such factors causing or contributing to such events was also part of the modeling process involved in this study.

FHAs often are conducted in the form of a brainstorming workshop involving a multi-disciplinary team, for example including pilots, air traffic controllers, airside operations personnel, and specialist risk assessors. The objective of the workshop is to explore all relevant operational scenarios and identify hazards associated with them. The output of the FHA is a "hazard log," including all hazards identified and preliminary information about them that can be provided by the workshop team.

#### Summary of Relevant Factors Identified

Table A1 summarizes the factors that are believed to lead to overrun, undershoot, and veer-off accidents and incidents based on FHA studies and literature review. Most of these factors were identified in *ACRP Report 3* and other studies, but some were added based on available reports from other sources.

| Event           | Category | Factor                                                                       |
|-----------------|----------|------------------------------------------------------------------------------|
| Landing Overrun | Weather  | Tail Wind                                                                    |
| (LDOR)          |          | Cross Wind                                                                   |
|                 |          | Wind variations (gusts, shear)                                               |
|                 |          | Visibility                                                                   |
|                 |          | Ceiling                                                                      |
|                 |          | Temperature                                                                  |
|                 | Airfield | Surface contaminants and friction (water, snow, ice, slush, rubber deposits) |
|                 |          | Landing Distance Available (LDA)                                             |
|                 |          | Slopes (longitudinal and transverse)                                         |
|                 |          | Altitude                                                                     |
|                 |          | Runway profile                                                               |
|                 |          | System faults                                                                |
|                 | Pilot    | Landing long                                                                 |
|                 |          | Unstabilized approach                                                        |
|                 |          | Landing fast                                                                 |
|                 |          | High threshold crossing height                                               |
|                 |          | "Pressonits"                                                                 |
|                 |          | Incorrect (delay) application of thrust reverse (if available) and spoilers  |
|                 |          | Incorrect (delay) application of brakes                                      |
|                 |          | Delayed nose-wheel lowering                                                  |
|                 |          | 'Over-consideration' for comfort                                             |
|                 |          | Incorrect interpretation of reported operation conditions                    |
|                 |          | Landing on the wrong runway                                                  |
|                 | Aircraft | Landing Distance Required (LDR)                                              |
|                 |          | Weight                                                                       |
|                 |          | System faults (e.g. brake systems failure)                                   |

Table A1. Summary of factors causing or contributing to aircraft overrun, undershoot, and veer-off occurrences.

| Table A1. | (Continu | ed). |
|-----------|----------|------|
|-----------|----------|------|

| Event            | Category   | Factor                                                                          |  |  |  |  |  |
|------------------|------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| Takeoff Overrun  | Weather    | Tail Wind                                                                       |  |  |  |  |  |
| (TOOR)           |            | Wind variations (gusts, shear)                                                  |  |  |  |  |  |
|                  |            | Cross wind                                                                      |  |  |  |  |  |
|                  |            | Temperature                                                                     |  |  |  |  |  |
|                  | Airfield   | Accelerate-Stop Distance Available (ASDA)                                       |  |  |  |  |  |
|                  |            | Surface contaminants and friction (water, snow, ice, rubber deposits) in        |  |  |  |  |  |
|                  |            | case of aborted takeoff                                                         |  |  |  |  |  |
|                  |            | Slopes (longitudinal and transverse) in case of aborted takeoff                 |  |  |  |  |  |
|                  |            | Altitude                                                                        |  |  |  |  |  |
|                  | Pilot      | Delay to abort takeoff when required                                            |  |  |  |  |  |
|                  |            | Incorrect (delay) application of thrust reverse (if available) and spoilers, in |  |  |  |  |  |
|                  |            | case takeoff is aborted                                                         |  |  |  |  |  |
|                  |            | Incorrect (delay) application of brakes, in case takeoff is aborted             |  |  |  |  |  |
|                  |            | Incorrect interpretation of reported operation conditions                       |  |  |  |  |  |
|                  |            | Selection of wrong runway                                                       |  |  |  |  |  |
|                  | Aircraft   | System or component malfunction require to abort takeoff                        |  |  |  |  |  |
|                  |            | Accelerate-Stop Distance Required (ASDR)                                        |  |  |  |  |  |
| Landing          | Weather    | Visibility                                                                      |  |  |  |  |  |
| Undershoot       |            | Ceiling                                                                         |  |  |  |  |  |
| (LDUS)           |            | Wind variations (gusts, shear)                                                  |  |  |  |  |  |
|                  |            | Temperature                                                                     |  |  |  |  |  |
|                  |            | Crosswind                                                                       |  |  |  |  |  |
|                  | Airfield   | System faults                                                                   |  |  |  |  |  |
|                  |            | Availability of navigational aids                                               |  |  |  |  |  |
|                  |            | Altitude                                                                        |  |  |  |  |  |
|                  | Pilot      | Approach too low                                                                |  |  |  |  |  |
|                  |            | Attempt to land too close to arrival end of the runway                          |  |  |  |  |  |
|                  |            | Misinterpretation of approach procedures                                        |  |  |  |  |  |
|                  |            | Visual illusion resulting incorrect pilot response                              |  |  |  |  |  |
|                  | Aircraft   | System faults                                                                   |  |  |  |  |  |
|                  |            | Stall speed                                                                     |  |  |  |  |  |
|                  |            | Approach speed                                                                  |  |  |  |  |  |
| Takeoff Veer-Off | Weather    | Crosswind                                                                       |  |  |  |  |  |
| (TOVO)           |            | Wind gusts                                                                      |  |  |  |  |  |
|                  |            | Heavy rain                                                                      |  |  |  |  |  |
|                  | Airfield   | Runway contamination (water, snow, ice, rubber)                                 |  |  |  |  |  |
|                  |            | Bird strike                                                                     |  |  |  |  |  |
|                  |            | Runway undulation                                                               |  |  |  |  |  |
|                  |            | Construction work                                                               |  |  |  |  |  |
|                  | Pilot/Crew | Abort takeoff above V1                                                          |  |  |  |  |  |
|                  |            | Incorrect performance calculation                                               |  |  |  |  |  |
|                  |            | Incorrect CG                                                                    |  |  |  |  |  |
|                  |            | Incorrect runway distance available                                             |  |  |  |  |  |
|                  | Aircraft   | Engine power loss                                                               |  |  |  |  |  |
|                  |            | Blown tire                                                                      |  |  |  |  |  |
|                  |            | Undercarriage collapse                                                          |  |  |  |  |  |
|                  |            | Loss of directional control                                                     |  |  |  |  |  |
| Landing Veer-Off | Weather    | Cross wind                                                                      |  |  |  |  |  |
| (LDVO)           |            | Wind gusts                                                                      |  |  |  |  |  |
|                  |            | Tailwind                                                                        |  |  |  |  |  |
|                  |            | Turbulence                                                                      |  |  |  |  |  |
|                  |            | Windshear                                                                       |  |  |  |  |  |
|                  | Airfield   | Runway contamination (water, snow, ice, slush, rubber)                          |  |  |  |  |  |
|                  |            | Snow banks                                                                      |  |  |  |  |  |
|                  | Pilot      | Hard landing with landing gear failure                                          |  |  |  |  |  |
|                  |            | Unstabilized approach                                                           |  |  |  |  |  |
|                  |            | Go around not conducted                                                         |  |  |  |  |  |
|                  |            | Touchdown long                                                                  |  |  |  |  |  |
|                  |            | Touchdown hard/bounce                                                           |  |  |  |  |  |
|                  | Aircraft   | Spontaneous collapse of undercarriage                                           |  |  |  |  |  |
|                  |            | Asymmetric forces due to thrust reverse problem                                 |  |  |  |  |  |
|                  |            | Asymmetric forces due to braking problem                                        |  |  |  |  |  |
|                  |            | Steering control system malfunction                                             |  |  |  |  |  |

### APPENDIX B

## Summary of Accidents and Incidents

The following table presents a summary of the overrun, veer-off, and undershoot accidents and incidents identified in the databases screened. Some events are reported in more than one database, and to avoid repeating the events during the consolidation of records, the reported event date, event type, aircraft type, and location were used to eliminate the repeated records.

| Date       | Country   | City/State           | Source                      | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-----------|----------------------|-----------------------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 7/18/1971  | Australia | Sydney               | Australia Civil<br>Aviation | LDOR          | Incident       | B741                     | YSSY            | 325                | 60                 | N/A                         |
| 1/17/1978  | US        | Tyler, TX            | AIDS                        | LDOR          | Incident       | AC68                     | TYR             | N/R                | N/R                | N/A                         |
| 5/2/1978   | US        | Lake Charles, LA     | AIDS                        | LDOR          | Incident       | CVLP                     | CWF             | N/R                | N/R                | N/A                         |
| 8/16/1978  | US        | Soda Springs, ID     | AIDS                        | LDOR          | Incident       |                          | U78             | N/R                | N/R                | N/A                         |
| 2/15/1979  | US        | Waukegan, IL         | AIDS                        | LDOR          | Incident       | G159                     | UGN             | N/R                | N/R                | N/A                         |
| 8/1/1979   | US        | Mattoon, IL          | AIDS                        | LDOR          | Incident       | SBR1                     | MTO             | N/R                | N/R                | N/A                         |
| 8/10/1979  | US        | Hayward, CA          | AIDS                        | LDOR          | Incident       |                          | HWD             | N/R                | N/R                | N/A                         |
| 9/11/1979  | US        | Fayetteville, AR     | AIDS                        | LDOR          | Incident       | SW3                      | FYV             | N/R                | N/R                | N/A                         |
| 11/21/1979 | US        | Carlsbad, CA         | AIDS                        | LDOR          | Incident       | LJ24                     | CRQ             | 100                | 0                  | N/A                         |
| 4/7/1980   | Canada    | Athabasca, AB        | Canada TSB                  | LDOR          | Accident       | MU2                      | CYWM            | N/R                | N/R                | N/A                         |
| 7/29/1980  | US        | Houma, LA            | AIDS                        | LDOR          | Incident       | AC11                     | HUM             | N/R                | N/R                | N/A                         |
| 8/7/1980   | UK        | Leeds Bradford       | UK AAIB                     | LDOR          | Incident       | VISC                     | LBA             | N/R                | N/R                | N/A                         |
| 9/6/1980   | Canada    | North Seal River, MB | Canada TSB                  | LDOR          | Incident       | DHC6                     | CEG8            | N/R                | N/R                | N/A                         |
| 12/20/1980 | US        | Teterboro, NJ        | AIDS                        | LDOR          | Incident       | FA20                     | TEB             | N/R                | N/R                | N/A                         |
| 2/1/1981   | US        | Pontiac, MI          | AIDS                        | LDOR          | Incident       | C550                     | PTK             | N/R                | N/R                | N/A                         |
| 3/29/1981  | England   | Bedfordshire         | AAIB                        | LDOR          | Accident       | L29A                     | EGGW            | 152                | 0                  | N/A                         |
| 5/1/1981   | US        | Little Rock, AR      | AIDS                        | LDOR          | Incident       | AC68                     | LIT             | N/R                | N/R                | N/A                         |
| 5/6/1981   | US        | New Castle, DE       | AIDS                        | LDOR          | Incident       | MU2                      | ILG             | N/R                | N/R                | N/A                         |
| 7/2/1981   | US        | Cleveland, OH        | AIDS                        | LDOR          | Incident       | CL60                     | CGF             | N/R                | N/R                | N/A                         |
| 7/17/1981  | US        | Lincoln, NE          | AIDS                        | LDOR          | Incident       | LJ25                     | LNK             | N/R                | N/R                | N/A                         |
| 8/1/1981   | Canada    | Salluit, QC          | Canada TSB                  | LDOR          | Incident       | DHC6                     | YZG             | N/R                | N/R                | N/A                         |
| 9/13/1981  | US        | Boston, MA           | AIDS                        | LDOR          | Incident       | DC10                     | BOS             | 50                 | 0                  | N/A                         |
| 12/9/1981  | US        | Albuquerque, NM      | AIDS                        | LDOR          | Incident       | AC6L                     | ABQ             | N/R                | N/R                | N/A                         |

| 12/11/1981 | Puerto<br>Rico | San Juan          | AIDS       | LDOR | Incident | DC10 | JSJ | 300  | 0   | N/A |
|------------|----------------|-------------------|------------|------|----------|------|-----|------|-----|-----|
| 1/1/1982   | UK             | Cambridge         | UK AAIB    | LDOR | Incident |      | CBG | N/R  | N/R | N/A |
| 1/12/1982  | US             | Dallas, TX        | AIDS       | LDOR | Incident | H25A | ADS | N/R  | N/R | N/A |
| 1/12/1982  | US             | Dallas, TX        | MITRE      | LDOR | Incident | H25A | ADS | 1241 | 0   | N/A |
| 2/15/1982  | US             | Los Angeles, CA   | NTSB       | LDOR | Incident | B731 | LAX | N/R  | N/R | N/A |
| 2/19/1982  | US             | Harlingen, TX     | NTSB       | LDOR | Incident | B721 | HRL | 299  | 0   | N/A |
| 2/19/1982  | US             | Oakland, CA       | AIDS       | LDOR | Incident | FA20 | OAK | N/R  | N/R | N/A |
| 2/26/1982  | US             | Atlanta, GA       | NTSB       | LDOR | Incident | BE9L | PDK | 600  | 280 | N/A |
| 10/1/1982  | UK             | Scatsa            | UK AAIB    | LDOR | Incident | A748 | SCS | N/R  | N/R | N/A |
| 11/11/1982 | US             | San Juan, PR      | MITRE      | LDOR | Incident | L101 | SJU | N/R  | N/R | N/A |
| 11/20/1982 | US             | Atlanta, GA       | NTSB       | LDOR | Accident | AC80 | ATL | 450  | 0   | N/A |
| 12/18/1982 | US             | Pellston, MI      | NTSB       | LDOR | Incident | DC91 | PLN | 80   | 0   | N/A |
| 12/27/1982 | US             | Dubuque, IA       | MITRE      | LDOR | Incident | E110 | DBQ | 110  | 0   | N/A |
| 4/19/1983  | Canada         | Gaspe Airport, QC | Canada TSB | LDOR | Accident | H25A | YGP | N/R  | N/R | N/A |
| 6/24/1983  | US             | Kailua/Kona, HI   | MITRE      | LDOR | Incident | YS11 | KOA | N/R  | N/R | N/A |
| 7/15/1983  | US             | Blountville, TN   | NTSB       | LDOR | Accident | GLF2 | TRI | N/R  | N/R | N/A |
| 7/20/1983  | US             | Chicago, IL       | NTSB       | LDOR | Incident | DC85 | ORD | 100  | 0   | N/A |
| 9/10/1983  | US             | Burlington, CO    | NTSB       | LDOR | Accident | BE9L | ITR | 225  | 0   | N/A |
| 9/20/1983  | US             | Massena, NY       | NTSB       | LDOR | Accident | LJ35 | MSS | 587  | 30  | N/A |
| 10/21/1983 | US             | Bloomington, IL   | MITRE      | LDOR | Incident | F27  | BMI | N/R  | N/R | N/A |
| 10/25/1983 | US             | Norfolk, VA       | NTSB       | LDOR | Accident | DC85 | NGU | 7    | 129 | N/A |
| 11/29/1983 | UK             | Sumburgh          | UK AAIB    | LDOR | Incident | A748 | LSI | 131  | 70  | N/A |
| 12/22/1983 | US             | Eagle, CO         | MITRE      | LDOR | Accident | LJ25 | EGE | N/R  | N/R | N/A |
| 1/30/1984  | US             | Avalon, CA        | NTSB       | LDOR | Accident | LJ24 | AVX | N/R  | N/R | N/A |
| 2/12/1984  | US             | Oshkosh, WI       | MITRE      | LDOR | Incident | DC93 | OSH | N/R  | N/R | N/A |
| 2/28/1984  | US             | New York, NY      | NTSB       | LDOR | Accident | DC10 | JFK | 660  | 35  | N/A |
| 3/30/1984  | US             | Kailua/Kona, HI   | MITRE      | LDOR | Incident |      | KOA | N/R  | N/R | N/A |
| 4/2/1984   | US             | Little Rock, AR   | NTSB       | LDOR | Accident | CL60 | LIT | 50   | 60  | N/A |
| 6/23/1984  | US             | Chicago, IL       | NTSB       | LDOR | Incident | B701 | ORD | 600  | 0   | N/A |
| 7/6/1984   | Canada         | Blanc-Sablon, QC  | Canada TSB | LDOR | Accident | A748 | YBX | 30   | 0   | N/A |
| 11/1/1984  | UK             | Bristol           | UK AAIB    | LDOR | Incident | A30B | BRS | N/R  | N/R | N/A |

| Date       | Country | City/State          | Source     | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|---------------------|------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 12/15/1984 | Canada  | Sioux Lookout, ON   | Canada TSB | LDOR          | Accident       | C500                     | YXL             | 502                | 0                  | N/A                         |
| 1/5/1985   | US      | Oklahoma City, OK   | NTSB       | LDOR          | Accident       | LJ25                     | OK15            | N/R                | N/R                | N/A                         |
| 1/31/1985  | US      | London, KY          | NTSB       | LDOR          | Accident       | SW4                      | LOZ             | 380                | 0                  | N/A                         |
| 5/8/1985   | US      | Chicago, IL         | AIDS       | LDOR          | Incident       | LJ24                     | Unknown         | N/R                | N/R                | N/A                         |
| 5/27/1985  | UK      | Leeds Bradford      | UK AAIB    | LDOR          | Incident       | L101                     | LBA             | 538                | 33                 | N/A                         |
| 6/11/1985  | US      | Van Nuys, CA        | NTSB       | LDOR          | Accident       | AC11                     | VNY             | 1300               | 0                  | N/A                         |
| 6/27/1985  | England | Leeds               | AAIB       | LDOR          | Accident       | L101                     | EGNM            | 147                | 0                  | N/A                         |
| 7/12/1985  | US      | Fort Worth, TX      | NTSB       | LDOR          | Accident       | LJ35                     | FTW             | 459                | 100                | N/A                         |
| 8/28/1985  | US      | Green Bay, WI       | MITRE      | LDOR          | Incident       | BA11                     | GRB             | N/R                | N/R                | N/A                         |
| 9/23/1985  | US      | Chicago, IL         | NTSB       | LDOR          | Accident       | FA10                     | DPA             | 1200               | 1100               | N/A                         |
| 10/19/1985 | US      | Bloomington, IN     | NTSB       | LDOR          | Accident       | VISC                     | BMG             | 320                | 75                 | N/A                         |
| 11/7/1985  | US      | Sparta, TN          | NTSB       | LDOR          | Accident       | H25A                     | SRB             | 359                | 20                 | N/A                         |
| 1/2/1986   | US      | Detroit, MI         | NTSB       | LDOR          | Incident       | DC10                     | DTW             | 100                | 0                  | N/A                         |
| 1/31/1986  | US      | Lancaster, CA       | AIDS       | LDOR          | Incident       | C550                     | WJF             | N/R                | N/R                | N/A                         |
| 2/8/1986   | US      | Carlsbad, CA        | NTSB       | LDOR          | Accident       | MU30                     | CRQ             | 100                | 119                | N/A                         |
| 2/21/1986  | US      | Erie, PA            | NTSB       | LDOR          | Accident       | DC91                     | ERI             | 180                | 70                 | N/A                         |
| 2/27/1986  | US      | Coatesville, PA     | NTSB       | LDOR          | Accident       | FA10                     | 40N             | 400                | 250                | N/A                         |
| 3/13/1986  | US      | Charleston, SC      | NTSB       | LDOR          | Incident       | DC91                     | CHS             | 870                | 200                | N/A                         |
| 5/7/1986   | US      | Hollywood, FL       | NTSB       | LDOR          | Accident       | LJ24                     | HWO             | N/R                | N/R                | N/A                         |
| 8/2/1986   | US      | Bedford, IN         | NTSB       | LDOR          | Accident       | H25A                     | BFR             | 677                | 0                  | N/A                         |
| 10/14/1986 | US      | Beverly, MA         | MITRE      | LDOR          | Accident       | BE9L                     | BVY             | N/R                | N/R                | N/A                         |
| 10/25/1986 | US      | Charlotte, NC       | NTSB       | LDOR          | Accident       | B731                     | CLT             | 516                | 75                 | N/A                         |
| 1/5/1987   | US      | Lebanon, NH         | MITRE      | LDOR          | Incident       | LJ35                     | LEB             | N/R                | N/R                | N/A                         |
| 1/29/1987  | US      | Chicago, IL         | MITRE      | LDOR          | Incident       | DC91                     | MDW             | N/R                | N/R                | N/A                         |
| 3/12/1987  | US      | Des Moines, IA      | AIDS       | LDOR          | Incident       | DC85                     | DSM             | 50                 | 0                  | N/A                         |
| 9/9/1987   | US      | Tulsa, OK           | AIDS       | LDOR          | Incident       | LJ35                     | TUL             | N/R                | N/R                | N/A                         |
| 10/6/1987  | US      | Kennewick, WA       | NTSB       | LDOR          | Accident       | JS31                     | S98             | 450                | 0                  | N/A                         |
| 10/21/1987 | US      | San Luis Obispo, CA | MITRE      | LDOR          | Incident       | SW4                      | SBP             | N/R                | N/R                | N/A                         |
| 10/28/1987 | US      | Bartlesville, OK    | NTSB       | LDOR          | Accident       | CVLT                     | BVO             | 918                | 0                  | N/A                         |
| 11/4/1987  | US      | Williamsport, PA    | MITRE      | LDOR          | Incident       | BE9L                     | IPT             | 100                | 0                  | N/A                         |
| 11/23/1987 | US      | Nashville, TN       | AIDS       | LDOR          | Incident       | B721                     | BNA             | 50                 | 0                  | N/A                         |

| 2/3/1988   | US     | Denver, CO          | MITRE      | LDOR | Incident | DC85 | DEN | 30  | 0    | N/A |
|------------|--------|---------------------|------------|------|----------|------|-----|-----|------|-----|
| 6/17/1988  | US     | West Palm Beach, FL | NTSB       | LDOR | Incident | LJ24 | PBI | 30  | 0    | N/A |
| 7/15/1988  | US     | San Diego, CA       | MITRE      | LDOR | Accident | MU2  | MYF | N/R | N/R  | N/A |
| 8/1/1988   | US     | Pensacola, FL       | NTSB       | LDOR | Incident | MD88 | PNS | 320 | 90   | N/A |
| 8/19/1988  | US     | Pensacola, FL       | ASRS       | LDOR | Incident |      | PNS | 78  | 0    | N/A |
| 9/19/1988  | US     | Paducah, KY         | ASRS       | LDOR | Incident |      | PAH | N/R | N/R  | N/A |
| 9/22/1988  | US     | Fremont, MI         | NTSB       | LDOR | Accident | C550 | 3FM | 644 | 150  | N/A |
| 9/23/1988  | US     | Paducah, KY         | MITRE      | LDOR | Incident | SW4  | PAH | 200 | 0    | N/A |
| 10/14/1988 | US     | Seattle, WA         | MITRE      | LDOR | Incident | B721 | SEA | 50  | 0    | N/A |
| 10/19/1988 | US     | Columbus, GA        | ASRS       | LDOR | Incident |      | LSF | 400 | 0    | N/A |
| 10/21/1988 | Canada | Happy Lake, NT      | Canada TSB | LDOR | Incident | DHC6 |     | N/R | N/R  | N/A |
| 11/10/1988 | US     | Burbank, CA         | MITRE      | LDOR | Incident | B17  | BUR | 470 | 0    | N/A |
| 11/13/1988 | US     | Nashville, TN       | MITRE      | LDOR | Incident | SW4  | BNA | N/R | N/R  | N/A |
| 11/17/1988 | US     | Bend, OR            | NTSB       | LDOR | Accident | LJ25 | BDN | 200 | 0    | N/A |
| 12/19/1988 | US     | Charleston, SC      | ASRS       | LDOR | Incident |      | CHS | 150 | 0    | N/A |
| 12/30/1988 | US     | San Jose, CA        | MITRE      | LDOR | Incident | LJ35 | SJC | N/R | N/R  | N/A |
| 1/9/1989   | US     | Baton Rouge, LA     | NTSB       | LDOR | Incident | DC91 | BTR | 300 | 0    | N/A |
| 1/12/1989  | US     | Crossville, TN      | AIDS       | LDOR | Incident | C500 | CSV | N/R | N/R  | N/A |
| 1/19/1989  | US     | Baton Rouge, LA     | ASRS       | LDOR | Incident |      | BTR | 200 | 0    | N/A |
| 2/15/1989  | US     | Binghamton, NY      | NTSB       | LDOR | Accident |      | BGM | 200 | 80   | N/A |
| 2/19/1989  | US     | Covington, OH       | ASRS       | LDOR | Incident |      | CVG | 60  | -140 | N/A |
| 2/20/1989  | US     | Bloomington, IL     | MITRE      | LDOR | Incident | SH36 | BMI | N/R | N/R  | N/A |
| 2/27/1989  | US     | Poughkeepsie, NY    | NTSB       | LDOR | Accident | C550 | POU | 700 | 100  | N/A |
| 3/19/1989  | US     | Chicago, IL         | ASRS       | LDOR | Incident |      | ORD | 500 | 30   | N/A |
| 3/19/1989  | US     | Daytona Beach, FL   | ASRS       | LDOR | Incident |      | DAB | 50  | 0    | N/A |
| 3/19/1989  | US     | Washington, DC      | ASRS       | LDOR | Incident |      | DCA | 150 | 0    | N/A |
| 3/23/1989  | US     | Roanoke, VA         | NTSB       | LDOR | Accident | LJ25 | ROA | 200 | 10   | N/A |
| 3/29/1989  | US     | Owensboro, KY       | MITRE      | LDOR | Incident | MU30 | OWB | N/R | N/R  | N/A |
| 4/1/1989   | UK     | Leeds Bradford      | UK AAIB    | LDOR | Incident | SH36 | LBA | N/R | N/R  | N/A |
| 4/12/1989  | US     | San Diego, CA       | MITRE      | LDOR | Incident | B752 | SAN | N/R | N/R  | N/A |
| 4/19/1989  | US     | San Diego, CA       | ASRS       | LDOR | Incident |      | SAN | 280 | 50   | N/A |
| 5/4/1989   | US     | El Monte, CA        | AIDS       | LDOR | Incident | C500 | EMT | N/R | N/R  | N/A |

| Date       | Country        | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|----------------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 5/18/1989  | US             | Jackson, MS      | MITRE  | LDOR          | Incident       | MU30                     | JAN             | N/R                | N/R                | N/A                         |
| 6/5/1989   | US             | Greensboro, NC   | MITRE  | LDOR          | Incident       | BE20                     | GSO             | N/R                | N/R                | N/A                         |
| 7/18/1989  | US             | Chicago, IL      | NTSB   | LDOR          | Incident       | DC10                     | ORD             | N/R                | N/R                | N/A                         |
| 7/27/1989  | US             | Jackson, WY      | MITRE  | LDOR          | Incident       | B731                     | JAC             | N/R                | N/R                | N/A                         |
| 10/18/1989 | US             | Monte Vista, CO  | NTSB   | LDOR          | Incident       | DC91                     | MVI             | N/R                | N/R                | N/A                         |
| 10/19/1989 | US             | Dover, DE        | ASRS   | LDOR          | Incident       |                          | DOV             | 200                | 0                  | N/A                         |
| 10/23/1989 | US             | Anchorage, AK    | MITRE  | LDOR          | Incident       | B741                     | ANC             | N/R                | N/R                | N/A                         |
| 12/13/1989 | US             | Chicago, IL      | NTSB   | LDOR          | Incident       | DC91                     | MDW             | 304                | 30                 | N/A                         |
| 12/30/1989 | US             | Tucson, AZ       | NTSB   | LDOR          | Accident       | B731                     | TUS             | 3803               | 175                | N/A                         |
| 1/19/1990  | US             | Denver, CO       | ASRS   | LDOR          | Incident       |                          | DEN             | 100                | 0                  | N/A                         |
| 4/5/1990   | US             | Pensacola, FL    | MITRE  | LDOR          | Incident       | F86                      | PNS             | N/R                | N/R                | N/A                         |
| 4/22/1990  | Australia      | Lord Howe Island | ASN    | LDOR          | Accident       | C501                     | LDH             | 250                | 0                  | N/A                         |
| 4/28/1990  | New<br>Zealand | Queenstown       | TAIC   | LDOR          | Incident       | B461                     | ZQN             | 318                | 82                 | N/A                         |
| 7/18/1990  | US             | Milwaukee, WI    | NTSB   | LDOR          | Accident       | MU30                     | MWC             | N/R                | N/R                | N/A                         |
| 7/19/1990  | US             | Jackson, WY      | ASRS   | LDOR          | Incident       |                          | JAC             | 310                | 0                  | N/A                         |
| 7/29/1990  | US             | Jackson, WY      | MITRE  | LDOR          | Incident       | B731                     | JAC             | N/R                | N/R                | N/A                         |
| 8/19/1990  | US             | Santa Ana, CA    | ASRS   | LDOR          | Incident       |                          | SNA             | 75                 | 0                  | N/A                         |
| 10/4/1990  | US             | Dallas, TX       | MITRE  | LDOR          | Incident       | GNAT                     | ADS             | N/R                | N/R                | N/A                         |
| 2/14/1991  | US             | Cleveland, OH    | NTSB   | LDOR          | Accident       | GLF2                     | BKL             | 250                | 150                | N/A                         |
| 3/12/1991  | US             | Alexandria, MN   | AIDS   | LDOR          | Incident       | MU30                     | AXN             | N/R                | N/R                | N/A                         |
| 3/19/1991  | US             | Raleigh, NC      | ASRS   | LDOR          | Incident       |                          | RDU             | 150                | 0                  | N/A                         |
| 3/29/1991  | US             | Sioux City, IA   | MITRE  | LDOR          | Incident       | AC11                     | SUX             | N/R                | N/R                | N/A                         |
| 6/19/1991  | US             | Kansas City, MO  | ASRS   | LDOR          | Incident       |                          | MCI             | 500                | 0                  | N/A                         |
| 6/26/1991  | US             | Kansas City, MO  | MITRE  | LDOR          | Incident       | B721                     | MCI             | N/R                | N/R                | N/A                         |
| 7/2/1991   | US             | Columbia, TN     | NTSB   | LDOR          | Accident       | LJ23                     | MRC             | 543                | 38                 | N/A                         |
| 8/10/1991  | US             | Charlotte, NC    | AIDS   | LDOR          | Incident       | B762                     | CLT             | 50                 | 0                  | N/A                         |
| 8/19/1991  | US             | Seattle, WA      | ASRS   | LDOR          | Incident       |                          | SEA             | 25                 | 30                 | N/A                         |
| 8/19/1991  | US             | Charlotte, NC    | ASRS   | LDOR          | Incident       |                          | CLT             | 80                 | 0                  | N/A                         |
| 10/6/1991  | US             | Augusta, ME      | NTSB   | LDOR          | Accident       | SW4                      | AUG             | 20                 | 0                  | N/A                         |
| 11/19/1991 | US             | Los Angeles, CA  | ASRS   | LDOR          | Incident       |                          | LAX             | 150                | 0                  | N/A                         |
| 11/26/1991 | US             | Los Angeles, CA  | MITRE  | LDOR          | Incident       | B731                     | LAX             | N/R                | N/R                | N/A                         |

| 12/23/1991 | US                  | Carlsbad, CA        | NTSB       | LDOR | Accident | LJ25 | CRQ | 50   | 75  | N/A |
|------------|---------------------|---------------------|------------|------|----------|------|-----|------|-----|-----|
| 3/31/1992  | UK                  | Aberdeen            | UK AAIB    | LDOR | Accident | B461 | ABZ | 479  | 43  | N/A |
| 4/19/1992  | US                  | Fort Lauderdale, FL | MITRE      | LDOR | Incident | ASTR | FLL | N/R  | N/R | N/A |
| 4/23/1992  | US                  | Detroit, MI         | NTSB       | LDOR | Accident | DC85 | YIP | N/R  | N/R | N/A |
| 5/19/1992  | US                  | Bozeman, MT         | ASRS       | LDOR | Incident |      | BZN | 150  | 0   | N/A |
| 6/17/1992  | US                  | Cedar Rapids, IA    | NTSB       | LDOR | Accident | SBR1 | CID | 212  | 0   | N/A |
| 7/1/1992   | US                  | Chicago, IL         | AIDS       | LDOR | Incident | B752 | ORD | 25   | 0   | N/A |
| 7/11/1992  | US                  | Cheyenne, WY        | MITRE      | LDOR | Incident | B190 | CYS | N/R  | N/R | N/A |
| 7/19/1992  | US                  | Chicago, IL         | ASRS       | LDOR | Incident |      | ORD | 30   | 0   | N/A |
| 7/19/1992  | N Mariana           | Rota Island         | ASRS       | LDOR | Incident |      | ROP | 10   | 0   | N/A |
| 7/29/1992  | US                  | Jackson, WY         | MITRE      | LDOR | Incident | B752 | JAC | N/R  | N/R | N/A |
| 8/7/1992   | US                  | Milwaukee, WI       | MITRE      | LDOR | Incident | B721 | MKE | N/R  | N/R | N/A |
| 8/19/1992  | US                  | Milwaukee, WI       | ASRS       | LDOR | Incident |      | MKE | 250  | 0   | N/A |
| 8/23/1992  | US                  | Louisville, KY      | MITRE      | LDOR | Incident | MD88 | SDF | N/R  | N/R | N/A |
| 9/8/1992   | US                  | Wilmington, NC      | MITRE      | LDOR | Incident | MU30 | ILM | N/R  | N/R | N/A |
| 11/7/1992  | US                  | Phoenix, AZ         | NTSB       | LDOR | Accident | SBR1 | PHX | 1500 | 120 | N/A |
| 11/22/1992 | US                  | Cleveland, OH       | NTSB       | LDOR | Accident | LJ25 | CLE | 200  | 0   | N/A |
| 11/27/1992 | UK                  | Southampton         | UK AAIB    | LDOR | Accident |      | SOU | 246  | 0   | N/A |
| 2/13/1993  | US                  | Portland, ME        | NTSB       | LDOR | Incident | B731 | PWM | 330  | 50  | N/A |
| 2/19/1993  | US                  | Portland, ME        | ASRS       | LDOR | Incident |      | PWM | 260  | 0   | N/A |
| 4/27/1993  | US                  | Denver, CO          | NTSB       | LDOR | Accident | DC91 | DEN | 1    | 30  | N/A |
| 4/29/1993  | US                  | Pine Bluff, AR      | NTSB       | LDOR | Accident | E120 | PBF | 687  | 50  | N/A |
| 5/24/1993  | US                  | Killeen, TX         | AIDS       | LDOR | Incident | FA10 | ILE | N/R  | N/R | N/A |
| 5/26/1993  | England             | Southampton         | UK AAIB    | LDOR | Accident | C550 | SOU | 630  | 0   | N/A |
| 6/4/1993   | US                  | Springfield, MO     | MITRE      | LDOR | Incident | FA10 | SGF | N/R  | N/R | N/A |
| 7/21/1993  | Canada              | Tofino, BC          | TSB        | LDOR | Incident | CVLT | YAZ | 152  | 20  | N/A |
| 8/26/1993  | US                  | Hailey, ID          | NTSB       | LDOR | Accident | FA10 | SUN | 850  | 260 | N/A |
| 9/12/1993  | French<br>Polynesia | Papeete             | France BEA | LDOR | Accident | B741 | PPT | 230  | 197 | N/A |
| 9/19/1993  | US                  | Washington, DC      | ASRS       | LDOR | Incident |      | DCA | 50   | 0   | N/A |
| 9/29/1993  | England             | Norwich             | UK AAIB    | LDOR | Incident | BA11 | NWI | 89   | 0   | N/A |
| 12/4/1993  | US                  | Corvallis, OR       | AIDS       | LDOR | Incident | L29B | CVO | N/R  | N/R | N/A |

| Date       | Country | City/State        | Source     | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|-------------------|------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 1/19/1994  | US      | Windsor Locks, CT | MITRE      | LDOR          | Incident       | DC91                     | BDL             | N/R                | N/R                | N/A                         |
| 1/19/1994  | US      | Wilmington, OH    | ASRS       | LDOR          | Incident       |                          | ILN             | 10                 | 0                  | N/A                         |
| 1/20/1994  | US      | Teterboro, NJ     | NTSB       | LDOR          | Accident       | MU30                     | TEB             | N/R                | N/R                | N/A                         |
| 1/21/1994  | Canada  | Terrace, BC       | Canada TSB | LDOR          | Incident       | B461                     | YXT             | 415                | 39                 | N/A                         |
| 1/27/1994  | US      | Chicago, IL       | MITRE      | LDOR          | Incident       | DC85                     | ORD             | 59                 | 0                  | N/A                         |
| 1/27/1994  | US      | Pontiac, MI       | MITRE      | LDOR          | Incident       | LJ35                     | PTK             | 30                 | 0                  | N/A                         |
| 2/1/1994   | US      | New Roads, LA     | NTSB       | LDOR          | Accident       | SF34                     | HZR             | 420                | 20                 | N/A                         |
| 2/8/1994   | US      | Washington, DC    | AIDS       | LDOR          | Incident       | MD80                     | DCA             | 50                 | 50                 | N/A                         |
| 2/19/1994  | US      | Rifle, CO         | ASRS       | LDOR          | Incident       | B461                     | RIL             | 630                | 70                 | N/A                         |
| 2/19/1994  | US      | Washington, DC    | ASRS       | LDOR          | Incident       | İ                        | DCA             | 250                | 50                 | N/A                         |
| 3/19/1994  | US      | State College, PA | ASRS       | LDOR          | Incident       | JS32                     | UNV             | 20                 | 0                  | N/A                         |
| 3/19/1994  | US      | Columbus, OH      | ASRS       | LDOR          | Incident       | İ                        | СМН             | 260                | 0                  | N/A                         |
| 4/26/1994  | US      | Anderson, IN      | AIDS       | LDOR          | Incident       | CVLP                     | AID             | N/R                | N/R                | N/A                         |
| 6/13/1994  | US      | Lewisburg, WV     | MITRE      | LDOR          | Incident       | LJ35                     | LWB             | 130                | 0                  | N/A                         |
| 7/22/1994  | US      | Jackson, WY       | MITRE      | LDOR          | Incident       | B731                     | JAC             | 61                 | 0                  | N/A                         |
| 8/10/1994  | S Korea | Jeju              | ADREP      | LDOR          | Accident       | A30B                     | CJU             | 1427               | 3278               | N/A                         |
| 8/19/1994  | US      | Savannah, GA      | ASRS       | LDOR          | Incident       |                          | SAV             | 2                  | 30                 | N/A                         |
| 10/8/1994  | US      | Pittsburgh, PA    | MITRE      | LDOR          | Incident       | B190                     | PIT             | N/R                | N/R                | N/A                         |
| 10/10/1994 | US      | San Antonio, TX   | AIDS       | LDOR          | Accident       | LJ35                     | SAT             | N/R                | N/R                | N/A                         |
| 11/4/1994  | US      | Little Rock, AR   | MITRE      | LDOR          | Incident       | DC91                     | LIT             | N/R                | N/R                | N/A                         |
| 11/17/1994 | US      | Bozeman, MT       | AIDS       | LDOR          | Incident       | DC91                     | BZN             | 290                | 0                  | N/A                         |
| 12/7/1994  | US      | Batavia, NY       | AIDS       | LDOR          | Incident       | C550                     | GVQ             | N/R                | N/R                | N/A                         |
| 1/19/1995  | US      | Atlanta, GA       | NTSB       | LDOR          | Incident       | B731                     | ATL             | 250                | 0                  | N/A                         |
| 1/24/1995  | US      | Milwaukee, WI     | AIDS       | LDOR          | Incident       | İ                        | MKE             | 100                | 0                  | N/A                         |
| 2/1/1995   | US      | Atlanta, GA       | ASRS       | LDOR          | Incident       | DC85                     | ATL             | 470                | 90                 | N/A                         |
| 2/17/1995  | US      | Atlanta, GA       | MITRE      | LDOR          | Incident       | DC85                     | ATL             | N/R                | N/R                | N/A                         |
| 2/19/1995  | US      | Chicago, IL       | ASRS       | LDOR          | Incident       |                          | ORD             | 200                | -70                | N/A                         |
| 2/19/1995  | US      | Chicago, IL       | ASRS       | LDOR          | Incident       | DC10                     | ORD             | 10                 | 0                  | N/A                         |
| 2/22/1995  | US      | Chicago, IL       | MITRE      | LDOR          | Incident       | DC10                     | ORD             | N/R                | N/R                | N/A                         |
| 3/1/1995   | Canada  | Jasper Hinton, AB | TSB        | LDOR          | Incident       | MU30                     | CEC4            | 256                | 0                  | N/A                         |
| 3/19/1995  | US      | Honolulu, HI      | ASRS       | LDOR          | Incident       | DC10                     | HNL             | 100                | 70                 | N/A                         |
| 4/29/1995  | US      | Chicago, IL       | MITRE      | LDOR          | Incident       | DC85                     | ORD             | N/R                | N/R                | N/A                         |

| 5/11/1995  | Canada    | Wabush, NL        | TSB        | LDOR | Incident | B721 | YWK | 299  | 21  | N/A |
|------------|-----------|-------------------|------------|------|----------|------|-----|------|-----|-----|
| 6/7/1995   | US        | Hyannis, MA       | AIDS       | LDOR | Incident | C500 | HYA | 300  | 0   | N/A |
| 7/26/1995  | US        | Minneapolis, MN   | NTSB       | LDOR | Accident | C550 | FCM | 800  | 0   | N/A |
| 8/21/1995  | US        | Mesa, AZ          | MITRE      | LDOR | Incident | LJ23 | FFZ | N/R  | N/R | N/A |
| 9/19/1995  | US        | Fayetteville, AR  | ASRS       | LDOR | Incident |      | FYV | 52   | 0   | N/A |
| 9/19/1995  | US        | Charleston, SC    | ASRS       | LDOR | Incident | MD88 | CHS | 50   | 160 | N/A |
| 12/8/1995  | US        | Chicago, IL       | MITRE      | LDOR | Incident | B721 | ORD | 40   | 0   | N/A |
| 12/9/1995  | US        | Jackson, WY       | AIDS       | LDOR | Incident | MU30 | JAC | N/R  | N/R | N/A |
| 12/14/1995 | US        | Detroit, MI       | AIDS       | LDOR | Incident | LJ55 | DET | 485  | 0   | N/A |
| 12/19/1995 | US        | Los Angeles, CA   | ASRS       | LDOR | Incident | B731 | LAX | 160  | 100 | N/A |
| 1/1/1996   | England   | Leicestershire    | UK AAIB    | LDOR | Incident | F70  | EMA | 377  | 30  | N/A |
| 1/2/1996   | Australia | Bankstown         | ATSB       | LDOR | Incident | A37  | BWU | N/R  | N/R | N/A |
| 1/5/1996   | England   | Leicestershire    | AAIB       | LDOR | Incident | DC85 | EMA | N/R  | N/R | N/A |
| 1/19/1996  | US        | Jackson, WY       | MITRE      | LDOR | Incident | E120 | JAC | N/R  | N/R | N/A |
| 1/26/1996  | US        | Sparta, TN        | AIDS       | LDOR | Incident | FA20 | SRB | 279  | 0   | N/A |
| 2/7/1996   | US        | Bradford, PA      | NTSB       | LDOR | Accident | B190 | BFD | 870  | 825 | N/A |
| 2/7/1996   | US        | Mammoth Lakes, CA | AIDS       | LDOR | Incident | SW2  | MMH | 20   | 0   | N/A |
| 2/19/1996  | US        | Houston, TX       | NTSB       | LDOR | Accident | DC91 | IAH | 51   | 140 | N/A |
| 2/19/1996  | US        | Savannah, GA      | ASRS       | LDOR | Incident |      | SAV | 300  | 50  | N/A |
| 2/20/1996  | US        | Washington, DC    | NTSB       | LDOR | Incident | B731 | DCA | 250  | 0   | N/A |
| 2/20/1996  | US        | Washington, DC    | AIDS       | LDOR | Incident | B731 | DCA | 150  | 75  | N/A |
| 2/20/1996  | US        | Rifle, CO         | NTSB       | LDOR | Incident | H25B | RIL | 1000 | 80  | N/A |
| 2/28/1996  | US        | Savannah, GA      | NTSB       | LDOR | Incident | DC91 | SAV | 201  | 0   | N/A |
| 3/25/1996  | US        | Hailey, ID        | AIDS       | LDOR | Incident | C500 | SUN | 40   | 0   | N/A |
| 4/3/1996   | US        | Traverse City, MI | AIDS       | LDOR | Incident | AT43 | TVC | N/R  | N/R | N/A |
| 4/3/1996   | Canada    | Moncton, NB       | Canada TSB | LDOR | Incident | B721 | YQM | 154  | 0   | N/A |
| 8/13/1996  | UK        | Northolt          | UK AAIB    | LDOR | Accident | LJ25 | NHT | 748  | 115 | N/A |
| 9/28/1996  | US        | Chillicothe, OH   | NTSB       | LDOR | Accident | MU2  | RZT | 15   | 147 | N/A |
| 10/6/1996  | US        | Salinas, CA       | MITRE      | LDOR | Incident | F86  | SNS | N/R  | N/R | N/A |
| 10/14/1996 | US        | Las Vegas, NV     | AIDS       | LDOR | Incident | AC68 | VGT | 400  | 0   | N/A |
| 10/29/1996 | US        | Waukegan, IL      | MITRE      | LDOR | Incident | CL60 | UGN | N/R  | N/R | N/A |
| 11/1/1996  | US        | Cleveland, OH     | ASRS       | LDOR | Incident | MD88 | CLE | 285  | 0   | N/A |

| Date       | Country | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 11/11/1996 | US      | Cleveland, OH    | AIDS   | LDOR          | Incident       | MD80                     | CLE             | 200                | 0                  | N/A                         |
| 11/11/1996 | US      | Cleveland, OH    | NTSB   | LDOR          | Incident       | MD88                     | CLE             | 530                | 35                 | N/A                         |
| 11/15/1996 | US      | Sioux Falls, SD  | MITRE  | LDOR          | Incident       | DC91                     | FSD             | N/R                | N/R                | N/A                         |
| 11/19/1996 | US      | Honolulu, HI     | ASRS   | LDOR          | Incident       | DC10                     | HNL             | 25                 | 0                  | N/A                         |
| 12/6/1996  | US      | Bedford, MA      | AIDS   | LDOR          | Incident       | GLF2                     | BED             | N/R                | N/R                | N/A                         |
| 12/22/1996 | US      | Hailey, ID       | AIDS   | LDOR          | Incident       | CL60                     | SUN             | N/R                | N/R                | N/A                         |
| 1/1/1997   | US      | Kansas City, MO  | NTSB   | LDOR          | Accident       | LJ35                     | MKC             | 105                | 1000               | N/A                         |
| 1/3/1997   | US      | Jackson, WY      | AIDS   | LDOR          | Incident       | WW24                     | JAC             | 60                 | 0                  | N/A                         |
| 1/21/1997  | US      | Bloomington, IN  | NTSB   | LDOR          | Accident       | BE30                     | BMG             | 600                | 0                  | N/A                         |
| 1/25/1997  | US      | Provincetown, MA | NTSB   | LDOR          | Incident       | C402                     | PVC             | 80                 | 0                  | N/A                         |
| 2/19/1997  | US      | Chicago, IL      | ASRS   | LDOR          | Incident       | B731                     | ORD             | 10                 | 0                  | N/A                         |
| 2/27/1997  | US      | Greenville, SC   | NTSB   | LDOR          | Accident       | LJ35                     | GMU             | 350                | 0                  | N/A                         |
| 3/12/1997  | US      | Houston, TX      | AIDS   | LDOR          | Incident       | MU30                     | SGR             | 145                | 0                  | N/A                         |
| 4/10/1997  | US      | Bloomington, IL  | MITRE  | LDOR          | Incident       | JS41                     | BMI             | N/R                | N/R                | N/A                         |
| 5/21/1997  | US      | San Diego, CA    | NTSB   | LDOR          | Accident       | E120                     | NKX             | 1300               | 0                  | N/A                         |
| 6/25/1997  | England | London           | AAIB   | LDOR          | Incident       | B461                     | EGLC            | 99                 | 10                 | N/A                         |
| 7/3/1997   | US      | Pensacola, FL    | AIDS   | LDOR          | Incident       | B190                     | PNS             | N/R                | N/R                | N/A                         |
| 7/5/1997   | US      | Ardmore, OK      | NTSB   | LDOR          | Accident       | SBR1                     | ADM             | 60                 | 0                  | N/A                         |
| 7/15/1997  | US      | Avon Park, FL    | NTSB   | LDOR          | Accident       | LJ35                     | AVO             | 1800               | 550                | N/A                         |
| 7/30/1997  | Italy   | Florence         | ADREP  | LDOR          | Accident       | AT43                     | FLR             | 394                | 0                  | N/A                         |
| 8/3/1997   | US      | East Hampton, NY | AIDS   | LDOR          | Incident       | C560                     | HTO             | 330                | 30                 | N/A                         |
| 8/19/1997  | US      | Des Moines, IA   | NTSB   | LDOR          | Accident       | SW3                      | DSM             | 867                | 0                  | N/A                         |
| 11/29/1997 | Wales   | Fairwood Common  | AAIB   | LDOR          | Incident       | VAMP                     | EGFH            | N/R                | N/R                | N/A                         |
| 12/7/1997  | England | Channel Islands  | AAIB   | LDOR          | Accident       | F27                      | EGJB            | 130                | 30                 | N/A                         |
| 12/19/1997 | US      | Savannah, GA     | ASRS   | LDOR          | Incident       | B721                     | SAV             | 20                 | 0                  | N/A                         |
| 12/19/1997 | US      | Memphis, TN      | ASRS   | LDOR          | Incident       | DC10                     | MEM             | 75                 | 0                  | N/A                         |
| 1/6/1998   | US      | Pittsburgh, PA   | NTSB   | LDOR          | Accident       | C500                     | AGC             | 375                | 75                 | N/A                         |
| 1/7/1998   | UK      | London City      | AAIB   | LDOR          | Incident       | B461                     | LCY             | 144                | 0                  | N/A                         |
| 1/16/1998  | US      | Van Nuys, CA     | AIDS   | LDOR          | Incident       | GLF4                     | VNY             | N/R                | N/R                | N/A                         |
| 1/19/1998  | US      | Portland, ME     | ASRS   | LDOR          | Incident       | B721                     | PWM             | 215                | 0                  | N/A                         |
| 1/19/1998  | US      | Mekoryuk, AK     | ASRS   | LDOR          | Incident       |                          | MYU             | 355                | 40                 | N/A                         |
| 1/22/1998  | US      | Denver, CO       | MITRE  | LDOR          | Incident       | DC85                     | DEN             | N/R                | N/R                | N/A                         |

| 1/22/1998  | US      | Denver, CO         | AIDS       | LDOR | Incident | DC85 | DEN  | N/R | N/R | N/A |
|------------|---------|--------------------|------------|------|----------|------|------|-----|-----|-----|
| 2/3/1998   | US      | Omaha, NE          | AIDS       | LDOR | Incident | C414 | OMA  | 100 | 0   | N/A |
| 2/18/1998  | Canada  | Peterborough, ON   | TSB        | LDOR | Incident | FA10 | YPQ  | 236 | 0   | N/A |
| 2/23/1998  | US      | Van Nuys, CA       | AIDS       | LDOR | Incident | LJ35 | VNY  | 50  | 0   | N/A |
| 2/26/1998  | US      | Pittsburgh, PA     | AIDS       | LDOR | Incident | WW24 | AGC  | 24  | 0   | N/A |
| 3/4/1998   | US      | Manistee, MI       | NTSB       | LDOR | Accident | C650 | MBL  | 150 | 0   | N/A |
| 3/11/1998  | US      | Aspen, CO          | MITRE      | LDOR | Incident | B461 | ASE  | N/R | N/R | N/A |
| 3/14/1998  | US      | Portland, ME       | MITRE      | LDOR | Incident | MD81 | PWM  | 600 | 0   | N/A |
| 3/14/1998  | US      | Portland, ME       | AIDS       | LDOR | Incident | MD80 | PWM  | 600 | 15  | N/A |
| 3/25/1998  | US      | Columbus, OH       | AIDS       | LDOR | Incident | CL60 | OSU  | N/R | N/R | N/A |
| 3/31/1998  | US      | Des Moines, IA     | MITRE      | LDOR | Incident | B721 | DSM  | N/R | N/R | N/A |
| 4/1/1998   | US      | Chinle, AZ         | AIDS       | LDOR | Incident | C421 | E91  | N/R | N/R | N/A |
| 4/19/1998  | US      | Lincoln, NE        | AIDS       | LDOR | Incident | C650 | LNK  | N/R | N/R | N/A |
| 5/19/1998  | US      | Atlanta, GA        | ASRS       | LDOR | Incident | DC91 | ATL  | 200 | 0   | N/A |
| 5/23/1998  | US      | Orlando, FL        | NTSB       | LDOR | Accident | LJ24 | ORL  | 500 | 0   | N/A |
| 6/19/1998  | US      | Fishers Island, NY | NTSB       | LDOR | Accident | C500 | 0B8  | 115 | 0   | N/A |
| 6/21/1998  | Spain   | Ibiza              | Spain TSB  | LDOR | Accident | A320 | LEIB | 250 | 150 | N/A |
| 7/14/1998  | US      | Pittsburgh, PA     | AIDS       | LDOR | Incident | B731 | PIT  | N/R | N/R | N/A |
| 7/14/1998  | US      | Pittsburgh, PA     | MITRE      | LDOR | Incident | B731 | PIT  | N/R | N/R | N/A |
| 7/22/1998  | UK      | Belfast            | UK AAIB    | LDOR | Incident | B461 | BHD  | 23  | 0   | N/A |
| 8/6/1998   | Canada  | Kasabonika, ON     | Canada TSB | LDOR | Accident | A748 | XKS  | 449 | 0   | N/A |
| 8/28/1998  | US      | Minneapolis, MN    | AIDS       | LDOR | Incident | BE30 | FCM  | N/R | N/R | N/A |
| 9/26/1998  | England | Fairoaks           | UK AAIB    | LDOR | Accident | C560 | FRK  | 765 | 140 | N/A |
| 10/24/1998 | UK      | Southampton        | UK AAIB    | LDOR | Incident | F100 | SOU  | 262 | 0   | N/A |
| 11/19/1998 | US      | Atlanta, GA        | ASRS       | LDOR | Incident | DC85 | ATL  | 85  | 0   | N/A |
| 12/18/1998 | US      | Rochester, NY      | AIDS       | LDOR | Incident | B721 | ROC  | 600 | 0   | N/A |
| 12/18/1998 | US      | Rochester, NY      | MITRE      | LDOR | Incident | B721 | ROC  | 600 | 110 | N/A |
| 12/24/1998 | US      | Providence, RI     | AIDS       | LDOR | Incident | MD80 | PVD  | N/R | N/R | N/A |
| 12/26/1998 | US      | Jackson, WY        | MITRE      | LDOR | Incident | B731 | JAC  | N/R | N/R | N/A |
| 12/29/1998 | US      | Jackson, WY        | AIDS       | LDOR | Incident | BE30 | JAC  | 46  | 0   | N/A |
| 1/19/1999  | US      | Wilmington, OH     | ASRS       | LDOR | Incident | DC85 | ILN  | 800 | 100 | N/A |
| 1/20/1999  | US      | Chino, CA          | AIDS       | LDOR | Incident | GLF2 | CNO  | 150 | 0   | N/A |

| Date       | Country         | City/State        | Source         | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-----------------|-------------------|----------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 2/8/1999   | Netherlan<br>ds | Amsterdam         | Netherland TSB | LDOR          | Incident       | B741                     | EHAM            | 100                | 0                  | N/A                         |
| 2/16/1999  | US              | Van Nuys, CA      | NTSB           | LDOR          | Accident       | GLF2                     | VNY             | 1072               | 451                | N/A                         |
| 2/18/1999  | US              | Columbus, NE      | NTSB           | LDOR          | Accident       | MU30                     | OLU             | 150                | 0                  | N/A                         |
| 3/9/1999   | US              | Indianapolis, IN  | MITRE          | LDOR          | Incident       | DC85                     | IND             | 30                 | 0                  | N/A                         |
| 4/17/1999  | US              | Beckley, WV       | NTSB           | LDOR          | Accident       | BE40                     | BKW             | 216                | 0                  | N/A                         |
| 4/28/1999  | US              | Crossville, TN    | AIDS           | LDOR          | Incident       | FA10                     | CSV             | N/R                | N/R                | N/A                         |
| 5/4/1999   | US              | Sparta, TN        | AIDS           | LDOR          | Incident       | FA20                     | SRB             | 140                | 0                  | N/A                         |
| 5/8/1999   | US              | New York, NY      | NTSB           | LDOR          | Accident       | SF34                     | JFK             | 350                | 0                  | N/A                         |
| 6/1/1999   | US              | Little Rock, AR   | NTSB           | LDOR          | Accident       | MD82                     | LIT             | 800                | 20                 | N/A                         |
| 6/19/1999  | Philippines     | Manila            | ASRS           | LDOR          | Incident       |                          | XCN             | N/R                | N/R                | N/A                         |
| 7/1/1999   | US              | Hyannis, MA       | NTSB           | LDOR          | Accident       | LJ60                     | НҮА             | 745                | 0                  | N/A                         |
| 7/19/1999  | US              | Minneapolis, MN   | ASRS           | LDOR          | Incident       | B721                     | MSP             | 125                | 0                  | N/A                         |
| 7/30/1999  | US              | Minneapolis, MN   | AIDS           | LDOR          | Incident       | B721                     | MSP             | 100                | 0                  | N/A                         |
| 7/30/1999  | US              | Minneapolis, MN   | MITRE          | LDOR          | Incident       | B721                     | MSP             | 100                | 0                  | N/A                         |
| 8/1/1999   | Canada          | St. John's, NL    | Canada TSB     | LDOR          | Accident       | F28                      | YYT             | 420                | 90                 | N/A                         |
| 8/5/1999   | US              | Mineral Point, WI | AIDS           | LDOR          | Incident       | BE99                     | MRJ             | N/R                | N/R                | N/A                         |
| 8/9/1999   | US              | Minneapolis, MN   | AIDS           | LDOR          | Incident       | DC10                     | MSP             | 200                | 0                  | N/A                         |
| 8/14/1999  | US              | Saranac Lake, NY  | AIDS           | LDOR          | Incident       | B721                     | SLK             | 30                 | 0                  | N/A                         |
| 8/19/1999  | US              | Minneapolis, MN   | ASRS           | LDOR          | Incident       | DC10                     | MSP             | 200                | 30                 | N/A                         |
| 9/6/1999   | Scotland        | Shetland          | AAIB           | LDOR          | Accident       | C208                     | EGPB            | 135                | 0                  | N/A                         |
| 9/19/1999  | US              | Minneapolis, MN   | ASRS           | LDOR          | Incident       | DC91                     | MSP             | 25                 | 0                  | N/A                         |
| 9/19/1999  | Ireland         | Shannon           | ASRS           | LDOR          | Incident       | MD11                     | SNN             | N/R                | N/R                | N/A                         |
| 9/23/1999  | Thailand        | Bangkok           | ATSB           | LDOR          | Accident       | B741                     | BKK             | 1049               | 59                 | N/A                         |
| 9/26/1999  | US              | Gainesville, GA   | NTSB           | LDOR          | Accident       | LJ24                     | GVL             | 274                | 100                | N/A                         |
| 10/19/1999 | France          | Paris             | ASRS           | LDOR          | Incident       | MD11                     | CDG             | 190                | 50                 | N/A                         |
| 11/22/1999 | Canada          | Dryden, ON        | Canada TSB     | LDOR          | Accident       | SW4                      | YHD             | 300                | 0                  | N/A                         |
| 12/13/1999 | US              | Atlanta, GA       | MITRE          | LDOR          | Incident       | C550                     | PDK             | 20                 | 0                  | N/A                         |
| 12/29/1999 | US              | Traverse City, MI | MITRE          | LDOR          | Accident       | DC91                     | TVC             | N/R                | N/R                | N/A                         |
| 1/1/2000   | US              | Charlotte, NC     | ASRS           | LDOR          | Incident       | DC91                     | CLT             | 225                | 0                  | N/A                         |
| 1/19/2000  | US              | Gary, IN          | MITRE          | LDOR          | Incident       | B721                     | GYY             | N/R                | N/R                | N/A                         |
| 1/20/2000  | US              | Sparta, TN        | ASRS           | LDOR          | Incident       | FA10                     | SRB             | N/R                | N/R                | N/A                         |

| 1/27/2000  | US                  | Dallas, TX          | NTSB       | LDOR | Accident | MU30 | DAL | N/R | N/R | N/A |
|------------|---------------------|---------------------|------------|------|----------|------|-----|-----|-----|-----|
| 2/16/2000  | Japan               | Sapporo             | ADREP      | LDOR | Accident | YS11 | OKD | N/R | N/R | N/A |
| 2/29/2000  | US                  | Houston, TX         | MITRE      | LDOR | Incident | B731 | IAH | N/R | N/R | N/A |
| 3/5/2000   | US                  | Burbank, CA         | NTSB       | LDOR | Accident | B731 | BUR | 200 | 200 | N/A |
| 3/12/2000  | US                  | Jackson, WY         | NTSB       | LDOR | Accident | LJ60 | JAC | 160 | 0   | N/A |
| 3/17/2000  | US                  | Hyannis, MA         | NTSB       | LDOR | Accident | F900 | HYA | 667 | 0   | N/A |
| 3/21/2000  | US                  | Killeen, TX         | NTSB       | LDOR | Accident | SF34 | ILE | 175 | 3   | N/A |
| 4/1/2000   | US                  | Eagle, CO           | AIDS       | LDOR | Incident | H25A | EGE | 9   | 0   | N/A |
| 5/18/2000  | US                  | Milwaukee, WI       | AIDS       | LDOR | Incident | AC56 | MWC | 228 | 0   | N/A |
| 6/29/2000  | US                  | Joliet, IL          | NTSB       | LDOR | Accident | BE20 | JOT | 170 | 0   | N/A |
| 7/1/2000   | England             | Coventry            | UK AAIB    | LDOR | Accident | F27  | CVT | 852 | 98  | N/A |
| 7/23/2000  | Canada              | Dorval, QC          | Canada TSB | LDOR | Incident | B741 | YUL | 700 | 0   | N/A |
| 8/9/2000   | US                  | Portland, OR        | AIDS       | LDOR | Incident | C402 | PDX | 250 | 0   | N/A |
| 9/1/2000   | Canada              | Ottawa, ON          | ASRS       | LDOR | Incident | B721 | YOW | 100 | 0   | N/A |
| 9/15/2000  | Canada              | Ottawa, ON          | Canada TSB | LDOR | Incident | B721 | YOW | 234 | 0   | N/A |
| 10/20/2000 | US                  | Saint Louis, MO     | ASRS       | LDOR | Incident | MD82 | STL | 807 | 225 | N/A |
| 11/28/2000 | Canada              | Fredericton, NB     | Canada TSB | LDOR | Incident | F28  | YFC | 320 | 0   | N/A |
| 12/18/2000 | Canada              | Windsor, ON         | Canada TSB | LDOR | Incident | A124 | YQG | 340 | 0   | N/A |
| 12/24/2000 | French<br>Polynesia | Papeete             | France BEA | LDOR | Accident | DC10 | PPT | 230 | 82  | N/A |
| 12/29/2000 | US                  | Charlottesville, VA | NTSB       | LDOR | Accident | JS41 | СНО | 60  | 0   | N/A |
| 1/1/2001   | US                  | Glasgow, KY         | ASRS       | LDOR | Incident | BE9L | GLW | N/R | N/R | N/A |
| 2/4/2001   | US                  | Ft. Pierce, FL      | NTSB       | LDOR | Accident | LJ25 | FPR | N/R | N/R | N/A |
| 2/13/2001  | US                  | Olympia, WA         | NTSB       | LDOR | Accident | BE20 | OLM | 442 | 0   | N/A |
| 3/4/2001   | US                  | Phoenix, AZ         | NTSB       | LDOR | Incident | B731 | PHX | 75  | 0   | N/A |
| 3/9/2001   | US                  | Bridgeport, CT      | NTSB       | LDOR | Accident | H25A | BDR | 22  | 0   | N/A |
| 3/12/2001  | US                  | Telluride, CO       | AIDS       | LDOR | Incident | LJ35 | TEX | N/R | N/R | N/A |
| 3/17/2001  | France              | Lyon                | France BEA | LDOR | Incident | B731 | LYS | 279 | 197 | N/A |
| 3/20/2001  | US                  | Shreveport, LA      | ASRS       | LDOR | Incident | E110 | SHV | 110 | 0   | N/A |
| 3/20/2001  | US                  | El Paso, TX         | ASRS       | LDOR | Incident |      | ELP | 150 | 0   | N/A |
| 4/4/2001   | Canada              | St. John's, NL      | Canada TSB | LDOR | Accident | B731 | YYT | 75  | 53  | N/A |
| 5/28/2001  | US                  | Chicago, IL         | MITRE      | LDOR | Incident | B731 | ORD | 205 | 0   | N/A |

| Date       | Country               | City/State        | Source            | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-----------------------|-------------------|-------------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 6/14/2001  | US                    | Van Nuys, CA      | AIDS              | LDOR          | Incident       | C550                     | VNY             | N/R                | N/R                | N/A                         |
| 7/20/2001  | US                    | Portland, ME      | ASRS              | LDOR          | Incident       | SF34                     | PWM             | 50                 | 0                  | N/A                         |
| 8/16/2001  | US                    | Saint Paul, MN    | AIDS              | LDOR          | Incident       | C404                     | STP             | N/R                | N/R                | N/A                         |
| 8/28/2001  | US                    | Detroit, MI       | NTSB              | LDOR          | Accident       | FA10                     | DET             | 679                | 120                | N/A                         |
| 8/30/2001  | US                    | Olathe, KS        | AIDS              | LDOR          | Incident       | GLF5                     | OJC             | 200                | 0                  | N/A                         |
| 11/19/2001 | Unknown               | Unknown           | AIDS              | LDOR          | Incident       | MU30                     | Unknown         | N/R                | N/R                | N/A                         |
| 12/1/2001  | US                    | Philadelphia, PA  | ASRS              | LDOR          | Incident       | C550                     | PHL             | 250                | 0                  | N/A                         |
| 12/13/2001 | US                    | Telluride, CO     | AIDS              | LDOR          | Incident       | SW3                      | TEX             | N/R                | N/R                | N/A                         |
| 12/14/2001 | US                    | Philadelphia, PA  | AIDS              | LDOR          | Incident       | C560                     | PHL             | N/R                | N/R                | N/A                         |
| 1/1/2002   | US                    | Miami, FL         | NTSB              | LDOR          | Incident       | MD83                     | MIA             | 590                | 135                | N/A                         |
| 1/19/2002  | US                    | Atlanta, GA       | AIDS              | LDOR          | Incident       | MU30                     | PDK             | 440                | 0                  | N/A                         |
| 1/22/2002  | US                    | Elberta, AL       | AIDS              | LDOR          | Incident       | BE40                     | 4AL7            | N/R                | N/R                | N/A                         |
| 2/10/2002  | US                    | Cleveland, OH     | NTSB              | LDOR          | Accident       | MU30                     | CGF             | 106                | 0                  | N/A                         |
| 3/25/2002  | US                    | Anderson, IN      | NTSB              | LDOR          | Accident       | MU30                     | AID             | 30                 | 50                 | N/A                         |
| 3/26/2002  | US                    | Erie, PA          | MITRE             | LDOR          | Incident       | DC91                     | ERI             | 40                 | 0                  | N/A                         |
| 5/1/2002   | US                    | Baltimore, MD     | NTSB              | LDOR          | Accident       | BE40                     | BWI             | 680                | 0                  | N/A                         |
| 5/2/2002   | US                    | Leakey, TX        | NTSB              | LDOR          | Accident       | C560                     | 49R             | 560                | 50                 | N/A                         |
| 5/23/2002  | US                    | Olathe, KS        | AIDS              | LDOR          | Incident       | C500                     | OJC             | N/R                | N/R                | N/A                         |
| 6/1/2002   | Australia             | Darwin            | ATSB              | LDOR          | Incident       | B731                     | YPDN            | 44                 | 0                  | N/A                         |
| 6/20/2002  | Dominican<br>Republic | Santo Domingo     | ASRS              | LDOR          | Incident       | B721                     | SDQ             | 200                | 0                  | N/A                         |
| 7/12/2002  | Ireland               | Dublin            | AAIU              | LDOR          | Incident       | SH36                     | EIDW            | 47                 | 0                  | N/A                         |
| 8/13/2002  | US                    | Big Bear City, CA | NTSB              | LDOR          | Accident       | C550                     | L35             | 406                | 30                 | N/A                         |
| 8/30/2002  | US                    | Lexington, KY     | NTSB              | LDOR          | Accident       | LJ25                     | LEX             | 410                | 10                 | N/A                         |
| 9/10/2002  | Canada                | Gander, NL        | Canada TSB        | LDOR          | Accident       | DC85                     | YQX             | 900                | 0                  | N/A                         |
| 9/15/2002  | US                    | La Porte, TX      | AIDS              | LDOR          | Incident       | C550                     | PPO             | 100                | 0                  | N/A                         |
| 11/2/2002  | Ireland               | Sligo             | AAIU              | LDOR          | Accident       | F27                      | SXL             | 328                | 98                 | N/A                         |
| 11/22/2002 | US                    | Soldotna, AK      | AIDS              | LDOR          | Incident       | ASTR                     | SXQ             | N/R                | N/R                | N/A                         |
| 12/1/2002  | US                    | Spokane, WA       | AIDS              | LDOR          | Incident       | DH8A                     | GEG             | N/R                | N/R                | N/A                         |
| 12/13/2002 | Singapore             | Singapore         | AAIB<br>Singapore | LDOR          | Incident       | DC85                     | SIN             | 968                | 197                | N/A                         |
| 12/20/2002 | US                    | Spokane, WA       | ASRS              | LDOR          | Incident       | DH8A                     | GEG             | 100                | 0                  | N/A                         |
| 12/20/2002 | US                    | White Plains, NY  | ASRS              | LDOR          | Incident       | H25A                     | HPN             | 200                | 0                  | N/A                         |

| 1/6/2003   | US      | Cleveland, OH       | NTSB    | LDOR | Accident | E145 | CLE     | 785  | 0   | N/A |
|------------|---------|---------------------|---------|------|----------|------|---------|------|-----|-----|
| 1/6/2003   | US      | Rifle, CO           | AIDS    | LDOR | Incident | GLF4 | RIL     | 160  | 0   | N/A |
| 1/17/2003  | Spain   | Melilla             | CIAIAC  | LDOR | Accident | F50  | MLN     | 710  | 90  | N/A |
| 1/30/2003  | England | Norwich             | UK AAIB | LDOR | Incident | E135 | NWI     | 426  | 33  | N/A |
| 2/8/2003   | US      | Bethel, AK          | MITRE   | LDOR | Incident | LJ25 | BET     | N/R  | N/R | N/A |
| 2/15/2003  | Italy   | Florence            | AIDS    | LDOR | Incident | B741 | FLR     | 770  | 0   | N/A |
| 2/15/2003  | US      | Rifle, CO           | AIDS    | LDOR | Incident | CL60 | RIL     | 27   | 0   | N/A |
| 2/17/2003  | US      | Eagle, CO           | MITRE   | LDOR | Incident | LJ60 | EGE     | N/R  | N/R | N/A |
| 2/17/2003  | US      | Eagle, CO           | AIDS    | LDOR | Incident | LJ60 | EGE     | N/R  | N/R | N/A |
| 2/20/2003  | Italy   | Sigonella           | ASRS    | LDOR | Incident | B741 | NSY     | 800  | 0   | N/A |
| 2/27/2003  | US      | Lewisburg, TN       | AIDS    | LDOR | Incident | FA20 | LUG     | 150  | 0   | N/A |
| 3/4/2003   | US      | Stockton, CA        | AIDS    | LDOR | Incident | GLF5 | SCK     | N/R  | N/R | N/A |
| 3/27/2003  | US      | Waukegan, IL        | MITRE   | LDOR | Incident | MU2  | UGN     | N/R  | N/R | N/A |
| 5/18/2003  | US      | Houston, TX         | NTSB    | LDOR | Accident | BE30 | IWS     | 20   | 0   | N/A |
| 5/20/2003  | US      | Minneapolis, MN     | ASRS    | LDOR | Incident | B731 | MSP     | 200  | 0   | N/A |
| 5/28/2003  | England | Leeds               | UK AAIB | LDOR | Incident | C560 | LBA     | 525  | 86  | N/A |
| 5/30/2003  | US      | New York, NY        | NTSB    | LDOR | Incident | MD11 | JFK     | 238  | 0   | N/A |
| 7/1/2003   | Unknown | Unknown             | ASRS    | LDOR | Incident | FA10 | Unknown | N/R  | N/R | N/A |
| 7/13/2003  | US      | Evansville, IN      | AIDS    | LDOR | Incident | LJ60 | EVV     | 150  | 0   | N/A |
| 9/19/2003  | US      | Del Rio, TX         | NTSB    | LDOR | Accident | LJ25 | DRT     | 1600 | 100 | N/A |
| 10/1/2003  | Belgium | Liège               | ASN     | LDOR | Accident | B741 | LGG     | 260  | 0   | N/A |
| 11/5/2003  | US      | Naples, FL          | AIDS    | LDOR | Incident | C650 | APF     | N/R  | N/R | N/A |
| 11/17/2003 | US      | Tulsa, OK           | AIDS    | LDOR | Incident | LJ24 | RVS     | 183  | 0   | N/A |
| 1/2/2004   | US      | Pensacola, FL       | AIDS    | LDOR | Incident | MD80 | PNS     | 100  | 0   | N/A |
| 1/3/2004   | US      | Minocqua, WI        | AIDS    | LDOR | Incident | C500 | ARV     | N/R  | N/R | N/A |
| 1/25/2004  | US      | Greensboro, NC      | AIDS    | LDOR | Incident | JS41 | GSO     | N/R  | N/R | N/A |
| 2/20/2004  | US      | Fort Lauderdale, FL | NTSB    | LDOR | Accident | LJ25 | FXE     | 1689 | 220 | N/A |
| 2/29/2004  | US      | San Diego, CA       | AIDS    | LDOR | Incident | AC68 | MYF     | N/R  | N/R | N/A |
| 3/1/2004   | US      | Mobile, AL          | AIDS    | LDOR | Incident | C500 | BFM     | N/R  | N/R | N/A |
| 3/19/2004  | US      | Pueblo, CO          | AIDS    | LDOR | Incident | E120 | PUB     | N/R  | N/R | N/A |
| 3/20/2004  | Unknown | Unknown             | ASRS    | LDOR | Incident | B190 | Unknown | 25   | 0   | N/A |
| 3/26/2004  | US      | Watertown, NY       | AIDS    | LDOR | Accident | B190 | ART     | N/R  | N/R | N/A |

| Date       | Country | City/State          | Source     | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|---------------------|------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 4/19/2004  | Canada  | Chibougamau, QC     | Canada TSB | LDOR          | Accident       | BE10                     | YMT             | 500                | 0                  | N/A                         |
| 4/20/2004  | US      | New Orleans, LA     | ASRS       | LDOR          | Incident       | B731                     | MSY             | 200                | 0                  | N/A                         |
| 5/12/2004  | US      | Mesa, AZ            | AIDS       | LDOR          | Incident       | FA10                     | FFZ             | N/R                | N/R                | N/A                         |
| 5/20/2004  | US      | Honolulu, HI        | ASRS       | LDOR          | Incident       | B762                     | HNL             | 75                 | 0                  | N/A                         |
| 6/3/2004   | US      | Lexington, KY       | AIDS       | LDOR          | Incident       | LJ55                     | LEX             | N/R                | N/R                | N/A                         |
| 6/23/2004  | US      | Houston, TX         | AIDS       | LDOR          | Incident       | E145                     | IAH             | 50                 | 30                 | N/A                         |
| 7/14/2004  | Canada  | Ottawa, ON          | Canada TSB | LDOR          | Incident       | E145                     | YOW             | 300                | 0                  | N/A                         |
| 7/19/2004  | US      | Fort Lauderdale, FL | NTSB       | LDOR          | Accident       | LJ55                     | FXE             | 950                | 280                | N/A                         |
| 7/20/2004  | US      | Tallahassee, FL     | ASRS       | LDOR          | Incident       | DC91                     | TLH             | 400                | 0                  | N/A                         |
| 8/5/2004   | US      | Watertown, NY       | AIDS       | LDOR          | Incident       | CL60                     | ART             | 23                 | 55                 | N/A                         |
| 8/5/2004   | US      | Oxford, NC          | AIDS       | LDOR          | Incident       | LJ25                     | HNZ             | N/R                | N/R                | N/A                         |
| 8/20/2004  | Unknown | Unknown             | ASRS       | LDOR          | Incident       | B731                     | Unknown         | 25                 | 0                  | N/A                         |
| 10/1/2004  | US      | Panama City, FL     | ASRS       | LDOR          | Incident       |                          | PFN             | 50                 | 0                  | N/A                         |
| 11/10/2004 | US      | Panama City, FL     | AIDS       | LDOR          | Incident       | BE20                     | PFN             | N/R                | N/R                | N/A                         |
| 12/1/2004  | US      | Teterboro, NJ       | NTSB       | LDOR          | Accident       | GLF4                     | TEB             | 100                | 490                | N/A                         |
| 12/5/2004  | US      | Pine Bluff, AR      | NTSB       | LDOR          | Accident       | FA10                     | PBF             | 240                | 0                  | N/A                         |
| 12/16/2004 | Canada  | Oshawa, ON          | Canada TSB | LDOR          | Accident       | SH36                     | YOO             | 600                | 0                  | N/A                         |
| 1/1/2005   | US      | Madison, WI         | AIDS       | LDOR          | Incident       | CL60                     | MSN             | N/R                | N/R                | N/A                         |
| 1/3/2005   | US      | San Diego, CA       | AIDS       | LDOR          | Incident       | PA31                     | MYF             | 255                | 0                  | N/A                         |
| 1/12/2005  | US      | Jacksonville, FL    | NTSB       | LDOR          | Accident       | B350                     | CRG             | 557                | 20                 | N/A                         |
| 1/24/2005  | Germany | Düsseldorf          | ASN        | LDOR          | Accident       | B741                     | DUS             | 2050               | 50                 | N/A                         |
| 2/28/2005  | US      | Lincolnton, NC      | AIDS       | LDOR          | Incident       | LJ35                     | IPJ             | 300                | 0                  | N/A                         |
| 3/8/2005   | US      | Teterboro, NJ       | NTSB       | LDOR          | Incident       | H25B                     | TEB             | 230                | 0                  | N/A                         |
| 5/20/2005  | US      | Wallace, NC         | AIDS       | LDOR          | Incident       | C500                     | ACZ             | 220                | 0                  | N/A                         |
| 6/14/2005  | US      | Norwood, MA         | AIDS       | LDOR          | Incident       | FA10                     | OWD             | 400                | 0                  | N/A                         |
| 8/2/2005   | Canada  | Toronto, ON         | Canada TSB | LDOR          | Accident       | A342                     | YYZ             | 1000               | 30                 | N/A                         |
| 8/13/2005  | US      | Portsmouth, VA      | AIDS       | LDOR          | Incident       | L18                      | PVG             | N/R                | N/R                | N/A                         |
| 9/23/2005  | US      | San Diego, CA       | AIDS       | LDOR          | Incident       | BE40                     | MYF             | 200                | 0                  | N/A                         |
| 10/5/2005  | US      | Jacksonville, FL    | NTSB       | LDOR          | Incident       | BE58                     | JAX             | N/R                | N/R                | N/A                         |
| 10/29/2005 | US      | Nashville, TN       | AIDS       | LDOR          | Incident       | BE20                     | JWN             | 700                | 0                  | N/A                         |
| 11/15/2005 | Canada  | Hamilton, ON        | Canada TSB | LDOR          | Accident       | ASTR                     | СҮНМ            | 272                | 100                | N/A                         |

| 12/8/2005  | US        | Chicago, IL         | NTSB              | LDOR | Accident | B737 | MDW     | 500  | 5   | N/A |
|------------|-----------|---------------------|-------------------|------|----------|------|---------|------|-----|-----|
| 12/29/2005 | US        | Indianapolis, IN    | AIDS              | LDOR | Incident | LJ25 | EYE     | 20   | 0   | N/A |
| 2/5/2006   | England   | Bedfordshire        | AAIB              | LDOR | Incident | CL60 | EGGW    | 98   | 0   | N/A |
| 2/11/2006  | Kuwait    | Kuwait City         | AIDS              | LDOR | Incident | MD11 | OKBK    | 80   | 0   | N/A |
| 2/20/2006  | Unknown   | Unknown             | ASRS              | LDOR | Incident | MD11 | Unknown | 220  | 0   | N/A |
| 2/28/2006  | US        | Albuquerque, NM     | AIDS              | LDOR | Incident | LJ25 | AEG     | N/R  | N/R | N/A |
| 3/3/2006   | US        | Teterboro, NJ       | AIDS              | LDOR | Incident | F900 | TEB     | N/R  | N/R | N/A |
| 3/8/2006   | Canada    | Powell River, BC    | Canada TSB        | LDOR | Accident | PA31 | CYPW    | 113  | 0   | N/A |
| 5/30/2006  | US        | Mosinee, WI         | AIDS              | LDOR | Incident | CL60 | CWI     | 400  | 0   | N/A |
| 6/22/2006  | Scotland  | Aberdeen            | UK AAIB           | LDOR | Incident | D328 | ABZ     | 1148 | 40  | N/A |
| 10/6/2006  | US        | Las Vegas, NV       | AIDS              | LDOR | Incident | B190 | VGT     | N/R  | N/R | N/A |
| 10/10/2006 | Norway    | Sørstokken          | ASN               | LDOR | Accident | B461 | SRP     | 500  | 0   | N/A |
| 10/10/2006 | England   | Hampshire           | AAIB              | LDOR | Incident | SW4  | EGHL    | 34   | 0   | N/A |
| 10/13/2006 | US        | Burbank, CA         | AIDS              | LDOR | Incident | GLF2 | BUR     | N/R  | N/R | N/A |
| 12/2/2006  | US        | Seattle, WA         | AIDS              | LDOR | Incident | DH8A | SEA     | N/R  | N/R | N/A |
| 12/12/2006 | US        | Great Bend, KS      | AIDS              | LDOR | Incident | PA31 | GBD     | N/R  | N/R | N/A |
| 1/26/2007  | US        | Pontiac, MI         | AIDS              | LDOR | Incident | CL60 | PTK     | N/R  | N/R | N/A |
| 2/18/2007  | US        | Cleveland, OH       | NTSB              | LDOR | Accident | E170 | CLE     | 310  | 160 | N/A |
| 2/20/2007  | England   | London              | AAIB              | LDOR | Incident | B461 | EGLC    | 33   | 0   | N/A |
| 3/7/2007   | Indonesia | Yogyakarta          | NTSC<br>Indonesia | LDOR | Accident | B731 | WARJ    | 252  | 30  | N/A |
| 3/29/2007  | US        | Oklahoma City, OK   | AIDS              | LDOR | Incident | GALX | PWA     | 500  | 0   | N/A |
| 4/12/2007  | US        | Traverse City, MI   | NTSB              | LDOR | Accident | CL60 | TVC     | 500  | 0   | N/A |
| 5/1/2007   | US        | Philadelphia, PA    | AIDS              | LDOR | Incident | C560 | PHL     | 100  | 0   | N/A |
| 6/20/2007  | US        | Laramie, WY         | NTSB              | LDOR | Accident | B190 | LAR     | 160  | 481 | N/A |
| 7/18/2007  | US        | Minneapolis, MN     | AIDS              | LDOR | Incident | B731 | MSP     | 120  | 0   | N/A |
| 11/1/2007  | US        | Fort Lauderdale, FL | AIDS              | LDOR | Incident | GLF2 | FXE     | 500  | 0   | N/A |
| 12/1/2007  | US        | Madison, WI         | AIDS              | LDOR | Incident | CL60 | MSN     | 45   | 0   | N/A |
| 12/10/2007 | US        | Idaho Falls, ID     | AIDS              | LDOR | Incident | MD80 | IDA     | N/R  | N/R | N/A |
| 1/27/2008  | US        | Spokane, WA         | AIDS              | LDOR | Incident | B731 | GEG     | 500  | 0   | N/A |
| 1/30/2008  | US        | Decatur, IL         | AIDS              | LDOR | Incident | B752 | DEC     | N/R  | N/R | N/A |
| 2/25/2008  | US        | Jackson, WY         | NTSB              | LDOR | Incident | A320 | JAC     | 116  | 140 | N/A |

| Date       | Country | City/State                   | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|------------------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 3/7/2008   | US      | Columbus, OH                 | AIDS   | LDOR          | Incident       | B731                     | СМН             | 267                | 0                  | N/A                         |
| 3/15/2008  | US      | San Antonio, TX              | AIDS   | LDOR          | Incident       | LJ35                     | SAT             | 240                | 0                  | N/A                         |
| 5/4/2008   | US      | Fort Collins/Loveland,<br>CO | AIDS   | LDOR          | Incident       | MD80                     | FNL             | 10                 | 0                  | N/A                         |
| 6/24/2008  | US      | Nantucket, MA                | AIDS   | LDOR          | Incident       | SW3                      | ACK             | N/R                | N/R                | N/A                         |
| 12/28/2008 | US      | Houston, TX                  | AIDS   | LDOR          | Incident       |                          | BPT             | 50                 | 0                  | N/A                         |
| 1/4/2009   | US      | Syracuse, NY                 | AIDS   | LDOR          | Incident       | E145                     | SYR             | N/R                | N/R                | N/A                         |
| 2/28/2009  | US      | Savannah, GA                 | AIDS   | LDOR          | Incident       | CL60                     | SAV             | 750                | 0                  | N/A                         |
| 4/3/1978   | US      | Detroit, MI                  | AIDS   | LDUS          | Incident       | DC10                     | DTW             | -50                | 0                  | N/A                         |
| 5/31/1978  | US      | Lewistown, MT                | AIDS   | LDUS          | Incident       | MU2                      | LWT             | N/R                | N/R                | N/A                         |
| 6/29/1978  | US      | Ebensburg, PA                | AIDS   | LDUS          | Incident       | MU2                      | 9G8             | N/R                | N/R                | N/A                         |
| 1/10/1979  | US      | Lubbock, TX                  | AIDS   | LDUS          | Incident       | LJ24                     | LBB             | -120               | 0                  | N/A                         |
| 1/27/1979  | US      | Agana, GU                    | AIDS   | LDUS          | Incident       | B721                     | GUM             | -278               | 0                  | N/A                         |
| 8/17/1979  | US      | Oklahoma City, OK            | AIDS   | LDUS          | Accident       | FA20                     | PWA             | -200               | 0                  | N/A                         |
| 8/28/1979  | US      | Saipan, MP                   | AIDS   | LDUS          | Incident       | B721                     | GSN             | N/R                | N/R                | N/A                         |
| 12/21/1979 | US      | Burlington, VT               | AIDS   | LDUS          | Incident       | BA11                     | BTV             | -100               | 0                  | N/A                         |
| 12/22/1979 | US      | Denver, CO                   | AIDS   | LDUS          | Incident       | B721                     | DEN             | -50                | 0                  | N/A                         |
| 7/25/1980  | US      | Tampa, FL                    | AIDS   | LDUS          | Incident       | B721                     | TPA             | -50                | 0                  | N/A                         |
| 10/19/1980 | US      | Phoenix, AZ                  | AIDS   | LDUS          | Incident       | B721                     | PHX             | -500               | 0                  | N/A                         |
| 10/22/1980 | US      | Phoenix, AZ                  | AIDS   | LDUS          | Incident       | DC91                     | PHX             | -500               | 0                  | N/A                         |
| 3/12/1981  | US      | Cincinnati, OH               | AIDS   | LDUS          | Incident       | SBR1                     | LUK             | -50                | 0                  | N/A                         |
| 4/18/1981  | US      | Sand Point, AK               | AIDS   | LDUS          | Incident       | YS11                     | SDP             | -300               | 0                  | N/A                         |
| 11/26/1981 | US      | Augusta, GA                  | AIDS   | LDUS          | Incident       | B721                     | AGS             | -300               | 0                  | N/A                         |
| 1/19/1982  | US      | Rockport, TX                 | NTSB   | LDUS          | Accident       | SW3                      | RKP             | -1821              | 317                | N/A                         |
| 5/16/1982  | US      | Hooper Bay, AK               | NTSB   | LDUS          | Accident       | DHC6                     | HPB             | -1270              | 50                 | N/A                         |
| 1/23/1983  | US      | New York, NY                 | AIDS   | LDUS          | Incident       | DC85                     | JFK             | -200               | 0                  | N/A                         |
| 3/20/1983  | US      | Chicago, IL                  | AIDS   | LDUS          | Incident       | SBR1                     | ORD             | N/R                | N/R                | N/A                         |
| 7/7/1983   | US      | Rochelle, IL                 | AIDS   | LDUS          | Incident       | BE20                     | RPJ             | N/R                | N/R                | N/A                         |
| 12/12/1983 | US      | Coatesville, PA              | NTSB   | LDUS          | Accident       | SBR1                     | 40N             | -20                | 250                | N/A                         |
| 12/21/1983 | US      | Detroit, MI                  | NTSB   | LDUS          | Accident       | BE20                     | DET             | -125               | 0                  | N/A                         |
| 1/5/1984   | US      | Seattle, WA                  | NTSB   | LDUS          | Incident       | B721                     | SEA             | -360               | 0                  | N/A                         |
| 4/8/1984   | US      | Austin, TX                   | AIDS   | LDUS          | Incident       | LJ25                     | AUS             | -50                | 0                  | N/A                         |

| 7/12/1984  | US | Mcalester, OK    | NTSB | LDUS | Accident | BE18 | MLC | N/R   | N/R | N/A |
|------------|----|------------------|------|------|----------|------|-----|-------|-----|-----|
| 5/12/1985  | US | Lake Geneva, WI  | NTSB | LDUS | Accident | FA10 | C02 | -13   | 5   | N/A |
| 6/28/1985  | US | Charlotte, NC    | NTSB | LDUS | Accident | PAY3 | CLT | -1800 | 0   | N/A |
| 8/2/1985   | US | Dallas, TX       | NTSB | LDUS | Accident | L101 | DFW | -6336 | 360 | N/A |
| 9/25/1985  | US | Dutch Harbor, AK | NTSB | LDUS | Accident | B731 | DUT | N/R   | N/R | N/A |
| 2/7/1986   | US | Mekoryuk, AK     | NTSB | LDUS | Accident | DHC6 | MYU | N/R   | N/R | N/A |
| 2/8/1986   | US | Harlingen, TX    | AIDS | LDUS | Accident | B721 | HRL | -250  | 0   | N/A |
| 5/20/1986  | US | Hutchinson, KS   | NTSB | LDUS | Incident | SW3  | HUT | -3    | 0   | N/A |
| 7/1/1986   | US | Lincoln, NE      | NTSB | LDUS | Accident | SW4  | LNK | -243  | 0   | N/A |
| 9/29/1986  | US | Liberal, KS      | NTSB | LDUS | Accident | SBR1 | LBL | -21   | 0   | N/A |
| 1/4/1987   | US | Hudson, NY       | AIDS | LDUS | Incident | LJ55 | 1B1 | -100  | 0   | N/A |
| 2/11/1987  | US | Oneonta, NY      | NTSB | LDUS | Accident | BE99 | N66 | -10   | 100 | N/A |
| 6/22/1987  | US | Atlanta, GA      | AIDS | LDUS | Incident | DH8A | ATL | N/R   | N/R | N/A |
| 9/28/1987  | US | Saint Louis, MO  | AIDS | LDUS | Incident | MD80 | STL | -30   | 0   | N/A |
| 11/23/1987 | US | Homer, AK        | NTSB | LDUS | Accident | B190 | HOM | -159  | 0   | N/A |
| 12/5/1987  | US | Lexington, KY    | NTSB | LDUS | Accident | H25A | LEX | N/R   | N/R | N/A |
| 2/16/1988  | US | Groton, CT       | AIDS | LDUS | Incident | SF34 | GON | -150  | 0   | N/A |
| 6/1/1988   | US | New York, NY     | NTSB | LDUS | Incident | B741 | JFK | N/R   | N/R | N/A |
| 7/26/1988  | US | Morristown, NJ   | NTSB | LDUS | Accident | LJ35 | MMU | -660  | 75  | N/A |
| 9/19/1988  | US | San Diego, CA    | ASRS | LDUS | Incident |      | SAN | -50   | 0   | N/A |
| 12/19/1988 | US | Sandusky, OH     | ASRS | LDUS | Incident |      | SKY | -60   | 0   | N/A |
| 3/15/1989  | US | Lafayette, IN    | NTSB | LDUS | Accident | YS11 | LAF | -510  | 13  | N/A |
| 4/13/1989  | US | Scottsdale, AZ   | NTSB | LDUS | Accident | H25B | SCF | -10   | 0   | N/A |
| 5/6/1989   | US | Columbia, TN     | NTSB | LDUS | Accident | E110 | MRC | -2350 | 20  | N/A |
| 7/19/1989  | US | Sioux City, IA   | NTSB | LDUS | Accident | DC10 | SUX | -198  | 761 | N/A |
| 8/21/1989  | US | Gold Beach, OR   | NTSB | LDUS | Accident | BE9L | 4S1 | -50   | 150 | N/A |
| 12/26/1989 | US | Pasco, WA        | NTSB | LDUS | Accident | JS31 | PSC | -1200 | 20  | N/A |
| 1/17/1990  | US | West Point, MS   | NTSB | LDUS | Accident | BE40 | M83 | -6    | 0   | N/A |
| 1/19/1990  | US | Little Rock, AR  | NTSB | LDUS | Accident | GLF2 | LIT | -1600 | 0   | N/A |
| 5/4/1990   | US | Wilmington, NC   | NTSB | LDUS | Accident | NOMA | ILM | -600  | 0   | N/A |
| 11/29/1990 | US | Sebring, FL      | NTSB | LDUS | Accident | C550 | SEF | -100  | 60  | N/A |
| 12/16/1990 | US | Marshfield, WI   | AIDS | LDUS | Incident | C500 | MFI | N/R   | N/R | N/A |

| Date       | Country      | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|--------------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 12/20/1990 | US           | Mcminnville, OR  | AIDS   | LDUS          | Incident       | FA10                     | MMV             | N/R                | N/R                | N/A                         |
| 5/15/1991  | US           | Nashville, TN    | NTSB   | LDUS          | Incident       | B721                     | BNA             | -408               | 0                  | N/A                         |
| 10/19/1991 | US           | Allakaket, AK    | NTSB   | LDUS          | Accident       | BE99                     | AET             | -100               | 30                 | N/A                         |
| 11/15/1991 | US           | Brigham City, UT | AIDS   | LDUS          | Incident       | H25A                     | BMC             | N/R                | N/R                | N/A                         |
| 6/16/1992  | US           | New Castle, DE   | NTSB   | LDUS          | Accident       | BE20                     | ILG             | -1320              | 0                  | N/A                         |
| 8/8/1992   | US           | Nuiqsut, AK      | NTSB   | LDUS          | Accident       | BE99                     | AQT             | -50                | 0                  | N/A                         |
| 11/5/1992  | US           | San Antonio, TX  | AIDS   | LDUS          | Incident       | SW4                      | SAT             | N/R                | N/R                | N/A                         |
| 7/19/1993  | US           | Nantucket, MA    | ASRS   | LDUS          | Incident       |                          | ACK             | -150               | 0                  | N/A                         |
| 7/30/1993  | US           | Nantucket, MA    | AIDS   | LDUS          | Incident       | B731                     | ACK             | -50                | 0                  | N/A                         |
| 12/8/1993  | US           | Dallas, TX       | NTSB   | LDUS          | Incident       | B731                     | DFW             | -1095              | 0                  | N/A                         |
| 1/24/1994  | US           | Key Largo, FL    | NTSB   | LDUS          | Incident       | LJ35                     | 07FA            | -35                | 0                  | N/A                         |
| 2/19/1995  | US           | Portland, OR     | ASRS   | LDUS          | Incident       | B721                     | PDX             | -350               | 0                  | N/A                         |
| 3/3/1995   | US           | Gillette, WY     | NTSB   | LDUS          | Accident       | WW24                     | GCC             | -50                | 0                  | N/A                         |
| 6/19/1995  | Panama       | Panama City      | ASRS   | LDUS          | Incident       | B741                     | PTY             | -350               | 0                  | N/A                         |
| 9/18/1995  | US           | Chino, CA        | NTSB   | LDUS          | Accident       | SW3                      | CNO             | -1000              | 75                 | N/A                         |
| 10/12/1995 | US           | Cleveland, OH    | NTSB   | LDUS          | Accident       | GLF2                     | CLE             | N/R                | N/R                | N/A                         |
| 11/19/1995 | US           | Anchorage, AK    | AIDS   | LDUS          | Incident       | C441                     | ANC             | N/R                | N/R                | N/A                         |
| 1/7/1996   | US           | Nashville, TN    | NTSB   | LDUS          | Accident       | DC91                     | BNA             | -90                | 0                  | N/A                         |
| 8/31/1996  | US           | Lubbock, TX      | AIDS   | LDUS          | Incident       | B721                     | LBB             | -10                | 0                  | N/A                         |
| 10/19/1996 | US           | Flushing, NY     | NTSB   | LDUS          | Accident       | MD88                     | LGA             | -303               | 95                 | N/A                         |
| 4/7/1997   | US           | Stebbins, AK     | NTSB   | LDUS          | Accident       | PA31                     | WBB             | -153               | 0                  | N/A                         |
| 8/13/1997  | US           | Lexington, KY    | NTSB   | LDUS          | Accident       | FA20                     | LEX             | -13                | 215                | N/A                         |
| 8/14/1997  | US           | Dalton, GA       | NTSB   | LDUS          | Accident       | BE20                     | DNN             | -1105              | 135                | N/A                         |
| 10/19/1997 | Hong<br>Kong | Hong Kong        | ASRS   | LDUS          | Incident       | B741                     | HKG             | -150               | 0                  | N/A                         |
| 11/13/1997 | US           | Wheeling, WV     | NTSB   | LDUS          | Accident       | BE65                     | HLG             | -90                | 125                | N/A                         |
| 2/9/1998   | US           | Chicago, IL      | NTSB   | LDUS          | Accident       | B721                     | ORD             | -300               | 500                | N/A                         |
| 2/19/1998  | Hong<br>Kong | Hong Kong        | ASRS   | LDUS          | Incident       | B741                     | HKG             | -900               | 0                  | N/A                         |
| 2/11/1999  | US           | Grand Island, NE | AIDS   | LDUS          | Incident       | GLF5                     | GRI             | N/R                | N/R                | N/A                         |
| 2/19/1999  | US           | Miami, FL        | ASRS   | LDUS          | Incident       | A30B                     | MIA             | -75                | 0                  | N/A                         |
| 3/30/1999  | England      | Newquay          | AAIB   | LDUS          | Incident       | C550                     | EGHQ            | -266               | 0                  | N/A                         |
| 3/30/1999  | US           | Rogers, AR       | NTSB   | LDUS          | Accident       | LJ35                     | ROG             | -12                | 100                | N/A                         |

| 5/19/1999  | US               | New York, NY         | ASRS       | LDUS | Incident | B762 | JFK  | -100  | 0   | N/A |
|------------|------------------|----------------------|------------|------|----------|------|------|-------|-----|-----|
| 9/24/1999  | Canada           | St. John's, NL       | Canada TSB | LDUS | Accident | A320 | YYT  | -250  | 0   | N/A |
| 12/30/2000 | US               | Salt Lake City, UT   | AIDS       | LDUS | Incident | MD90 | SLC  | -400  | 0   | N/A |
| 5/25/2001  | French<br>Guiana | Cayenne              | France BEA | LDUS | Incident | A343 | CAY  | -98   | 0   | N/A |
| 6/12/2001  | US               | Salina, KS           | NTSB       | LDUS | Accident | LJ25 | SLN  | -2254 | 85  | N/A |
| 9/19/2001  | US               | Indianapolis, IN     | NTSB       | LDUS | Accident | BE20 | IND  | -621  | 0   | N/A |
| 10/20/2001 | US               | Houston, TX          | ASRS       | LDUS | Incident | B731 | IAH  | -100  | 0   | N/A |
| 1/15/2002  | US               | Kings Ford, MI       | AIDS       | LDUS | Incident | SW3  | IMT  | N/R   | N/R | N/A |
| 7/26/2002  | US               | Tallahassee, FL      | NTSB       | LDUS | Accident | B721 | TLH  | -1677 | 454 | N/A |
| 10/15/2002 | Canada           | Ontario, ON          | AIDS       | LDUS | Incident | B741 | ONT  | -50   | 0   | N/A |
| 10/20/2002 | US               | Ontario, CA          | ASRS       | LDUS | Incident | B741 | ONT  | -45   | 0   | N/A |
| 1/5/2003   | US               | Oklahoma City, OK    | AIDS       | LDUS | Incident | SBR1 | PWA  | N/R   | N/R | N/A |
| 4/9/2003   | US               | Du Bois, PA          | NTSB       | LDUS | Accident | SH33 | DUJ  | -500  | -50 | N/A |
| 6/28/2003  | US               | Goodnews, AK         | NTSB       | LDUS | Accident | SW3  | GNU  | -100  | 0   | N/A |
| 10/9/2003  | US               | Montague, CA         | AIDS       | LDUS | Incident | BE99 | 105  | N/R   | N/R | N/A |
| 11/18/2003 | US               | Dallas, TX           | NTSB       | LDUS | Accident | C550 | DFW  | -350  | 0   | N/A |
| 1/26/2004  | US               | Prescott, AZ         | AIDS       | LDUS | Incident | C560 | PRC  | N/R   | N/R | N/A |
| 6/6/2004   | US               | San Jose, CA         | AIDS       | LDUS | Incident | H25A | SJC  | N/R   | N/R | N/A |
| 8/25/2004  | US               | Venice, FL           | NTSB       | LDUS | Accident | C550 | VNC  | -30   | 0   | N/A |
| 1/9/2007   | Canada           | Fort St. John, BC    | Canada TSB | LDUS | Incident | JS31 | CYXJ | -320  | 0   | N/A |
| 12/17/2007 | US               | Vernal, UT           | AIDS       | LDUS | Incident | BE99 | VEL  | -50   | 0   | N/A |
| 7/13/2008  | US               | Saratoga Springs, NY | AIDS       | LDUS | Incident | LJ45 | 5B2  | N/R   | N/R | N/A |
| 9/15/2008  | US               | Nantucket, MA        | AIDS       | LDUS | Incident | C414 | ACK  | N/R   | N/R | N/A |
| 1/27/2009  | US               | Lubbock, TX          | NTSB       | LDUS | Accident | AT43 | LBB  | -630  | 0   | N/A |
| 1/10/1978  | US               | White Plains, NY     | AIDS       | LDVO | Incident | SBR1 | HPN  | N/A   | N/A | N/R |
| 1/25/1978  | US               | Owensboro, KY        | AIDS       | LDVO | Incident | FA10 | OWB  | N/A   | N/A | N/R |
| 1/26/1978  | US               | Flint, MI            | AIDS       | LDVO | Incident | LJ25 | FNT  | N/A   | N/A | N/R |
| 9/4/1978   | US               | Angier, NC           | AIDS       | LDVO | Incident |      | 78NC | N/A   | N/A | N/R |
| 9/5/1978   | US               | Lafayette, IN        | AIDS       | LDVO | Incident | C500 | LAF  | N/A   | N/A | N/R |
| 1/29/1979  | US               | Independence, KS     | AIDS       | LDVO | Incident | SW3  | IDP  | N/A   | N/A | N/R |
| 2/2/1979   | US               | Grand Rapids, MI     | AIDS       | LDVO | Incident | LJ24 | GRR  | N/A   | N/A | N/R |

| Date       | Country | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 2/7/1979   | US      | Elko, NV         | AIDS   | LDVO          | Incident       |                          | EKO             | N/A                | N/A                | N/R                         |
| 2/28/1979  | US      | Morristown, TN   | AIDS   | LDVO          | Incident       | SW2                      | MOR             | N/A                | N/A                | N/R                         |
| 4/4/1979   | US      | Dayton, OH       | AIDS   | LDVO          | Incident       | LJ23                     | DAY             | N/A                | N/A                | N/R                         |
| 4/29/1979  | US      | Fairbanks, AK    | AIDS   | LDVO          | Incident       | GLF5                     | PAFA            | N/A                | N/A                | N/R                         |
| 7/28/1979  | US      | Downey, ID       | AIDS   | LDVO          | Incident       | AC68                     | U58             | N/A                | N/A                | N/R                         |
| 8/15/1979  | US      | Campbellton, TX  | AIDS   | LDVO          | Incident       | C500                     | 0XA5            | N/A                | N/A                | N/R                         |
| 12/29/1979 | US      | Van Nuys, CA     | AIDS   | LDVO          | Incident       | GLF5                     | VNY             | N/A                | N/A                | N/R                         |
| 1/6/1980   | US      | Chicago, IL      | AIDS   | LDVO          | Incident       | WW24                     | Unknown         | N/A                | N/A                | N/R                         |
| 1/16/1980  | US      | Clarksburg, WV   | AIDS   | LDVO          | Incident       | GA7                      | СКВ             | N/A                | N/A                | N/R                         |
| 3/11/1980  | US      | Islip, NY        | AIDS   | LDVO          | Incident       | SW3                      | ISP             | N/A                | N/A                | N/R                         |
| 3/13/1980  | US      | Hagerstown, MD   | AIDS   | LDVO          | Incident       | SW4                      | HGR             | N/A                | N/A                | N/R                         |
| 10/1/1980  | England | Saint Peter      | AAIB   | LDVO          | Accident       | C500                     | EGJJ            | N/A                | N/A                | 548                         |
| 10/2/1980  | US      | Cleveland, OH    | AIDS   | LDVO          | Incident       | FA10                     | CLE             | N/A                | N/A                | N/R                         |
| 10/26/1980 | US      | Flushing, NY     | AIDS   | LDVO          | Incident       | SW3                      | LGA             | N/A                | N/A                | N/R                         |
| 11/18/1980 | US      | New Castle, DE   | AIDS   | LDVO          | Incident       | SW2                      | ILG             | N/A                | N/A                | N/R                         |
| 12/5/1980  | US      | Islip, NY        | AIDS   | LDVO          | Incident       | AC90                     | ISP             | N/A                | N/A                | N/R                         |
| 1/13/1981  | US      | Savoy, IL        | AIDS   | LDVO          | Incident       | AC68                     | CMI             | N/A                | N/A                | N/R                         |
| 2/11/1981  | US      | Indianapolis, IN | AIDS   | LDVO          | Incident       | AC90                     | IND             | N/A                | N/A                | N/R                         |
| 3/17/1981  | US      | Tucson, AZ       | AIDS   | LDVO          | Incident       | LJ24                     | TUS             | N/A                | N/A                | N/R                         |
| 9/6/1981   | US      | Denver, CO       | AIDS   | LDVO          | Incident       | GLF2                     | DEN             | N/A                | N/A                | N/R                         |
| 10/2/1981  | US      | Lexington, KY    | AIDS   | LDVO          | Incident       | SW2                      | LEX             | N/A                | N/A                | N/R                         |
| 10/15/1981 | US      | Saint Louis, MO  | AIDS   | LDVO          | Incident       | DC6                      | STL             | N/A                | N/A                | N/R                         |
| 10/31/1981 | US      | Jackson, MS      | AIDS   | LDVO          | Incident       | BE20                     | JAN             | N/A                | N/A                | N/R                         |
| 11/23/1981 | US      | Saint Paul, MN   | AIDS   | LDVO          | Incident       | FA10                     | STP             | N/A                | N/A                | N/R                         |
| 12/17/1981 | US      | Van Nuys, CA     | AIDS   | LDVO          | Incident       | LJ24                     | VNY             | N/A                | N/A                | N/R                         |
| 1/2/1982   | US      | Cedar City, UT   | AIDS   | LDVO          | Incident       | BE20                     | CDC             | N/A                | N/A                | N/R                         |
| 1/6/1982   | US      | Atlanta, GA      | AIDS   | LDVO          | Incident       | SW2                      | PDK             | N/A                | N/A                | N/R                         |
| 1/15/1982  | US      | Atlanta, GA      | AIDS   | LDVO          | Incident       | SW2                      | Unknown         | N/A                | N/A                | N/R                         |
| 2/2/1982   | US      | Port Clinton, OH | AIDS   | LDVO          | Incident       | BE20                     | PCW             | N/A                | N/A                | N/R                         |
| 2/24/1982  | US      | Chicago, IL      | NTSB   | LDVO          | Incident       | SW4                      | ORD             | N/A                | N/A                | N/R                         |
| 4/8/1982   | US      | Teterboro, NJ    | AIDS   | LDVO          | Incident       | LJ35                     | TEB             | N/A                | N/A                | N/R                         |
| 5/18/1982  | US      | Gillette, WY     | NTSB   | LDVO          | Incident       | G159                     | GCC             | N/A                | N/A                | 20                          |

| 5/21/1982  | US      | Dayton, OH            | NTSB | LDVO | Incident | BA11 | DAY       | N/A | N/A | N/R |
|------------|---------|-----------------------|------|------|----------|------|-----------|-----|-----|-----|
| 6/8/1982   | US      | Gillette, WY          | NTSB | LDVO | Incident | G159 | GCC       | N/A | N/A | N/R |
| 6/16/1982  | US      | Scottsbluff, NE       | AIDS | LDVO | Incident | SW4  | BFF       | N/A | N/A | N/R |
| 9/5/1982   | England | Stansted Mountfitchet | AAIB | LDVO | Incident | DC85 | EGSS      | N/A | N/A | 238 |
| 10/13/1982 | US      | Atlanta, GA           | AIDS | LDVO | Incident | H25A | Unknown   | N/A | N/A | N/R |
| 1/3/1983   | US      | Sacramento, CA        | AIDS | LDVO | Incident | SW3  | SAC       | N/A | N/A | N/R |
| 2/5/1983   | US      | Atlanta, GA           | AIDS | LDVO | Incident | MU30 | PDK       | N/A | N/A | N/R |
| 2/6/1983   | US      | Saint Paul Island, AK | AIDS | LDVO | Incident | LJ24 | SNP       | N/A | N/A | N/R |
| 2/16/1983  | US      | Manchester, NH        | AIDS | LDVO | Incident | WW24 | MHT       | N/A | N/A | N/R |
| 2/24/1983  | US      | Anchorage, AK         | AIDS | LDVO | Incident | LJ24 | ANC       | N/A | N/A | N/R |
| 3/1/1983   | US      | Houston, TX           | AIDS | LDVO | Incident | AC11 | HOU       | N/A | N/A | N/R |
| 3/1/1983   | US      | Corpus Christi, TX    | AIDS | LDVO | Incident | SW3  | CRP       | N/A | N/A | N/R |
| 3/17/1983  | US      | Denver, CO            | AIDS | LDVO | Incident | AC90 | DEN       | N/A | N/A | N/R |
| 3/22/1983  | US      | Ulysses, KS           | AIDS | LDVO | Incident | BE20 | ULS       | N/A | N/A | N/R |
| 3/27/1983  | US      | Chicago, IL           | AIDS | LDVO | Incident | LJ55 | PWK       | N/A | N/A | N/R |
| 4/5/1983   | US      | Hutchinson, KS        | NTSB | LDVO | Accident | AC50 | HUT       | N/A | N/A | 5   |
| 4/14/1983  | US      | Elkhart, IN           | AIDS | LDVO | Incident | SW2  | GSH       | N/A | N/A | N/R |
| 5/6/1983   | US      | Lincoln, NE           | AIDS | LDVO | Incident | SW3  | LNK       | N/A | N/A | N/R |
| 6/1/1983   | US      | Las Vegas, NV         | NTSB | LDVO | Accident | C402 | VGT       | N/A | N/A | 88  |
| 7/18/1983  | US      | El Paso, TX           | AIDS | LDVO | Incident | LJ25 | ELP       | N/A | N/A | N/R |
| 9/12/1983  | US      | Destin, FL            | AIDS | LDVO | Incident | C500 | DTS       | N/A | N/A | N/R |
| 11/8/1983  | US      | Franklin, PA          | NTSB | LDVO | Accident | BE18 | FKL       | N/A | N/A | 130 |
| 11/11/1983 | US      | Cleveland, OH         | AIDS | LDVO | Incident | G159 | LNN       | N/A | N/A | N/R |
| 11/23/1983 | US      | Chicago, IL           | AIDS | LDVO | Incident | LJ55 | PWK       | N/A | N/A | N/R |
| 11/28/1983 | US      | Johnstown, PA         | AIDS | LDVO | Incident | G159 | JST       | N/A | N/A | N/R |
| 2/22/1984  | US      | Cordova, AK           | NTSB | LDVO | Incident | E110 | CDV       | N/A | N/A | 10  |
| 7/3/1984   | US      | Denver, CO            | NTSB | LDVO | Incident | B722 | Stapleton | N/A | N/A | N/R |
| 7/7/1984   | US      | Gualala, CA           | NTSB | LDVO | Accident | C500 | Q69       | N/A | N/A | N/R |
| 7/8/1984   | US      | Oakland, CA           | AIDS | LDVO | Incident | SBR1 | OAK       | N/A | N/A | N/R |
| 8/18/1984  | US      | Cedar City, UT        | AIDS | LDVO | Incident |      | CDC       | N/A | N/A | N/R |
| 9/29/1984  | US      | Houston, TX           | NTSB | LDVO | Incident | DHC6 | IAH       | N/A | N/A | 30  |
| 12/5/1984  | US      | Minneapolis, MN       | AIDS | LDVO | Incident | SW2  | MSP       | N/A | N/A | N/R |

| Date       | Country | City/State          | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|---------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 12/12/1984 | US      | Detroit, MI         | AIDS   | LDVO          | Incident       | LJ24                     | YIP             | N/A                | N/A                | N/R                         |
| 12/19/1984 | US      | Salt Lake City, UT  | AIDS   | LDVO          | Incident       | LJ25                     | SLC             | N/A                | N/A                | N/R                         |
| 12/19/1984 | US      | Springdale, AR      | AIDS   | LDVO          | Incident       | SBR1                     | XNA             | N/A                | N/A                | N/R                         |
| 1/29/1985  | US      | Dobbins Afb, GA     | NTSB   | LDVO          | Accident       | L188                     | MGE             | N/A                | N/A                | 70                          |
| 1/31/1985  | US      | Denver, CO          | AIDS   | LDVO          | Incident       | LJ35                     | DEN             | N/A                | N/A                | N/R                         |
| 3/30/1985  | US      | Fort Lauderdale, FL | NTSB   | LDVO          | Incident       | C402                     | FLL             | N/A                | N/A                | 50                          |
| 9/28/1985  | US      | Broomfield, CO      | AIDS   | LDVO          | Incident       | WW24                     | BJC             | N/A                | N/A                | N/R                         |
| 10/25/1985 | US      | Monterey, CA        | AIDS   | LDVO          | Incident       | WW24                     | MRY             | N/A                | N/A                | N/R                         |
| 11/14/1985 | US      | Bloomington, IL     | AIDS   | LDVO          | Incident       | F27                      | BMI             | N/A                | N/A                | N/R                         |
| 12/5/1985  | US      | Lafayette, IN       | AIDS   | LDVO          | Incident       | H25A                     | LAF             | N/A                | N/A                | N/R                         |
| 12/20/1985 | US      | Cleveland, OH       | AIDS   | LDVO          | Incident       | LJ35                     | Unknown         | N/A                | N/A                | N/R                         |
| 2/21/1986  | US      | Dallas, TX          | AIDS   | LDVO          | Incident       | FA10                     | Unknown         | N/A                | N/A                | N/R                         |
| 5/16/1986  | US      | Laramie, WY         | NTSB   | LDVO          | Accident       | BE99                     | LAR             | N/A                | N/A                | 90                          |
| 7/1/1986   | US      | Chicago, IL         | AIDS   | LDVO          | Incident       | LJ35                     | DPA             | N/A                | N/A                | N/R                         |
| 8/17/1986  | US      | Llano, CA           | AIDS   | LDVO          | Incident       |                          | 46CN            | N/A                | N/A                | N/R                         |
| 10/30/1986 | US      | Saint Louis, MO     | AIDS   | LDVO          | Accident       | AC90                     | Unknown         | N/A                | N/A                | N/R                         |
| 11/6/1986  | US      | Bedford, MA         | AIDS   | LDVO          | Incident       | AC95                     | BED             | N/A                | N/A                | 200                         |
| 11/20/1986 | US      | White Plains, NY    | AIDS   | LDVO          | Incident       | C550                     | HPN             | N/A                | N/A                | N/R                         |
| 1/9/1987   | US      | Bloomington, IL     | AIDS   | LDVO          | Incident       | B190                     | BMI             | N/A                | N/A                | N/R                         |
| 2/25/1987  | US      | Durango, CO         | NTSB   | LDVO          | Incident       | B732                     | DRO             | N/A                | N/A                | N/R                         |
| 2/27/1987  | US      | Kalamazoo, MI       | AIDS   | LDVO          | Incident       | WW24                     | AZO             | N/A                | N/A                | N/R                         |
| 3/16/1987  | US      | Oklahoma City, OK   | AIDS   | LDVO          | Incident       | F900                     | OKC             | N/A                | N/A                | N/R                         |
| 3/18/1987  | US      | Atlanta, GA         | AIDS   | LDVO          | Incident       | C550                     | PDK             | N/A                | N/A                | N/R                         |
| 5/1/1987   | US      | Jacksonville, FL    | AIDS   | LDVO          | Incident       | LJ25                     | CRG             | N/A                | N/A                | N/R                         |
| 8/12/1987  | US      | Marion, IN          | AIDS   | LDVO          | Incident       | CL60                     | MZZ             | N/A                | N/A                | N/R                         |
| 9/18/1987  | US      | Reno, NV            | AIDS   | LDVO          | Incident       | AC68                     | RNO             | N/A                | N/A                | N/R                         |
| 10/23/1987 | US      | Avalon, CA          | NTSB   | LDVO          | Accident       | C402                     | AVX             | N/A                | N/A                | 130                         |
| 11/17/1987 | US      | Port Angeles, WA    | NTSB   | LDVO          | Incident       | BE99                     | CLM             | N/A                | N/A                | 50                          |
| 12/9/1987  | US      | Van Nuys, CA        | AIDS   | LDVO          | Incident       | C550                     | VNY             | N/A                | N/A                | N/R                         |
| 12/14/1987 | US      | Chicago, IL         | AIDS   | LDVO          | Incident       | BE20                     | MDW             | N/A                | N/A                | N/R                         |
| 12/24/1987 | US      | Aspen, CO           | AIDS   | LDVO          | Incident       | WW24                     | ASE             | N/A                | N/A                | N/R                         |
| 12/26/1987 | US      | Fort Lauderdale, FL | AIDS   | LDVO          | Incident       | AC11                     | FXE             | N/A                | N/A                | N/R                         |

| 12/27/1987 | US | Denver, CO          | NTSB | LDVO | Incident | MD80 | DEN | N/A | N/A | 70   |
|------------|----|---------------------|------|------|----------|------|-----|-----|-----|------|
| 1/4/1988   | US | Belmar, NJ          | AIDS | LDVO | Incident | LJ25 | BLM | N/A | N/A | N/R  |
| 1/7/1988   | US | Oakland, CA         | AIDS | LDVO | Incident | GLF5 | OAK | N/A | N/A | N/R  |
| 1/13/1988  | US | Fort Lauderdale, FL | AIDS | LDVO | Incident | LJ25 | FLL | N/A | N/A | N/R  |
| 1/21/1988  | US | Dallas, TX          | AIDS | LDVO | Incident | FA10 | DAL | N/A | N/A | N/R  |
| 1/22/1988  | US | Starkville, MS      | AIDS | LDVO | Incident | AC90 | STF | N/A | N/A | N/R  |
| 2/2/1988   | US | Denver, CO          | NTSB | LDVO | Accident | CVLT | DEN | N/A | N/A | 5    |
| 2/4/1988   | US | Newburgh, NY        | AIDS | LDVO | Incident | LJ55 | SWF | N/A | N/A | N/R  |
| 2/19/1988  | US | Lansing, MI         | AIDS | LDVO | Incident | L29B | LAN | N/A | N/A | N/R  |
| 3/15/1988  | US | Teterboro, NJ       | AIDS | LDVO | Incident | BE20 | TEB | N/A | N/A | N/R  |
| 4/15/1988  | US | Seattle, WA         | NTSB | LDVO | Accident | DH8A | SEA | N/A | N/A | 1675 |
| 7/31/1988  | US | Saint Louis, MO     | AIDS | LDVO | Incident | BE20 | SUS | N/A | N/A | N/R  |
| 8/29/1988  | US | Bakersfield, CA     | AIDS | LDVO | Incident | AC90 | BFL | N/A | N/A | N/R  |
| 9/21/1988  | US | Van Nuys, CA        | AIDS | LDVO | Incident | C500 | VNY | N/A | N/A | N/R  |
| 10/7/1988  | US | Durango, CO         | AIDS | LDVO | Incident | BE20 | DRO | N/A | N/A | N/R  |
| 10/14/1988 | US | Anchorage, AK       | AIDS | LDVO | Incident | YS11 | ANC | N/A | N/A | N/R  |
| 3/2/1989   | US | Rifle, CO           | AIDS | LDVO | Incident | SBR1 | RIL | N/A | N/A | N/R  |
| 3/3/1989   | US | Rockford, IL        | AIDS | LDVO | Incident | WW24 | RFD | N/A | N/A | N/R  |
| 3/17/1989  | US | Waukegan, IL        | AIDS | LDVO | Incident | FA10 | UGN | N/A | N/A | N/R  |
| 3/31/1989  | US | Windsor Locks, CT   | AIDS | LDVO | Incident | CL60 | BDL | N/A | N/A | N/R  |
| 10/19/1989 | US | Waukegan, IL        | AIDS | LDVO | Incident | C650 | UGN | N/A | N/A | N/R  |
| 11/28/1989 | US | Houma, LA           | AIDS | LDVO | Incident | C550 | HUM | N/A | N/A | N/R  |
| 12/10/1989 | US | Denver, CO          | AIDS | LDVO | Incident | WW24 | APA | N/A | N/A | N/R  |
| 12/27/1989 | US | Merced, CA          | AIDS | LDVO | Incident | LJ25 | MCE | N/A | N/A | N/R  |
| 1/24/1990  | US | Olathe, KS          | AIDS | LDVO | Incident | LJ55 | IXD | N/A | N/A | N/R  |
| 2/20/1990  | US | Chicago, IL         | AIDS | LDVO | Incident | C650 | ARR | N/A | N/A | N/R  |
| 6/6/1990   | US | Alton, IL           | AIDS | LDVO | Incident | LJ35 | ALN | N/A | N/A | N/R  |
| 8/8/1990   | US | Ames, IA            | AIDS | LDVO | Incident | SBR1 | AMW | N/A | N/A | N/R  |
| 10/12/1990 | US | Burlington, VT      | AIDS | LDVO | Incident | B190 | BTV | N/A | N/A | N/R  |
| 11/18/1990 | US | Atlanta, GA         | AIDS | LDVO | Incident | FA10 | PDK | N/A | N/A | N/R  |
| 12/10/1990 | US | Indianapolis, IN    | AIDS | LDVO | Incident | AC90 | IND | N/A | N/A | N/R  |
| 1/9/1991   | US | Philadelphia, PA    | AIDS | LDVO | Incident | WW24 | PNE | N/A | N/A | N/R  |

| Date       | Country        | City/State           | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|----------------|----------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 1/13/1991  | US             | Palmyra, PA          | AIDS   | LDVO          | Incident       | AC68                     | 58N             | N/A                | N/A                | N/R                         |
| 1/30/1991  | US             | Cleveland, OH        | AIDS   | LDVO          | Incident       | SBR1                     | CGF             | N/A                | N/A                | N/R                         |
| 2/5/1991   | US             | Cochran, GA          | NTSB   | LDVO          | Incident       |                          | 48A             | N/A                | N/A                | 75                          |
| 2/15/1991  | US             | Louisville, KY       | AIDS   | LDVO          | Incident       | SW3                      | SDF             | N/A                | N/A                | N/R                         |
| 3/3/1991   | US             | Columbus, OH         | AIDS   | LDVO          | Incident       | LJ35                     | OSU             | N/A                | N/A                | N/R                         |
| 4/10/1991  | US             | Richmond, VA         | AIDS   | LDVO          | Incident       | SBR1                     | RIC             | N/A                | N/A                | N/R                         |
| 5/1/1991   | US             | Oxford, CT           | NTSB   | LDVO          | Accident       | WW24                     | OXC             | N/A                | N/A                | 100                         |
| 6/11/1991  | US             | Seattle, WA          | AIDS   | LDVO          | Incident       | DHC6                     | BFI             | N/A                | N/A                | N/R                         |
| 7/19/1991  | US             | Boone, NC            | AIDS   | LDVO          | Incident       |                          | NC14            | N/A                | N/A                | N/R                         |
| 9/5/1991   | US             | Waukegan, IL         | AIDS   | LDVO          | Incident       | FA10                     | UGN             | N/A                | N/A                | N/R                         |
| 11/11/1991 | US             | Rochester, NY        | AIDS   | LDVO          | Incident       | B190                     | ROC             | N/A                | N/A                | N/R                         |
| 1/10/1992  | US             | Coeur D Alene, ID    | AIDS   | LDVO          | Incident       | LJ35                     | COE             | N/A                | N/A                | N/R                         |
| 1/27/1992  | US             | Louisville, KY       | AIDS   | LDVO          | Incident       | LJ35                     | LOU             | N/A                | N/A                | N/R                         |
| 3/31/1992  | US             | Garden City, KS      | AIDS   | LDVO          | Incident       |                          | GCK             | N/A                | N/A                | N/R                         |
| 4/11/1992  | US             | South Lake Tahoe, CA | AIDS   | LDVO          | Incident       | SW2                      | TVL             | N/A                | N/A                | N/R                         |
| 4/12/1992  | US             | Albany, NY           | AIDS   | LDVO          | Incident       | GLF4                     | ALB             | N/A                | N/A                | N/R                         |
| 4/20/1992  | US             | Waukegan, IL         | AIDS   | LDVO          | Incident       | FA10                     | UGN             | N/A                | N/A                | N/R                         |
| 4/24/1992  | US             | Cleveland, OH        | AIDS   | LDVO          | Incident       | LJ35                     | CGF             | N/A                | N/A                | N/R                         |
| 6/24/1992  | Puerto<br>Rico | Mayaguez             | NTSB   | LDVO          | Incident       | C212                     | MAZ             | N/A                | N/A                | 45                          |
| 6/25/1992  | US             | Boston, MA           | NTSB   | LDVO          | Accident       | SW4                      | BOS             | N/A                | N/A                | 85                          |
| 8/2/1992   | US             | Saint Petersburg, FL | AIDS   | LDVO          | Incident       | AC90                     | PIE             | N/A                | N/A                | N/R                         |
| 12/26/1992 | US             | Wellington, KS       | AIDS   | LDVO          | Incident       | SW2                      | EGT             | N/A                | N/A                | N/R                         |
| 2/21/1993  | US             | Bellingham, WA       | AIDS   | LDVO          | Incident       | B461                     | BLI             | N/A                | N/A                | N/R                         |
| 3/24/1993  | US             | Soldiers Grove, WI   | AIDS   | LDVO          | Incident       | C560                     | WS51            | N/A                | N/A                | N/R                         |
| 4/14/1993  | US             | Dallas, TX           | NTSB   | LDVO          | Accident       | DC10                     | DFW             | N/A                | N/A                | 175                         |
| 8/7/1993   | US             | Spruce Creek, FL     | AIDS   | LDVO          | Incident       |                          | 7FL6            | N/A                | N/A                | N/R                         |
| 8/28/1993  | US             | Fort Lauderdale, FL  | AIDS   | LDVO          | Incident       | LJ23                     | FXE             | N/A                | N/A                | N/R                         |
| 8/30/1993  | US             | Hartford, CT         | AIDS   | LDVO          | Incident       | BE40                     | HFD             | N/A                | N/A                | N/R                         |
| 11/9/1993  | US             | Indianapolis, IN     | AIDS   | LDVO          | Incident       | SBR1                     | IND             | N/A                | N/A                | N/R                         |
| 12/22/1993 | US             | Morrisville, VT      | AIDS   | LDVO          | Incident       | BE20                     | MVL             | N/A                | N/A                | N/R                         |
| 1/3/1994   | US             | Cleveland, OH        | MITRE  | LDVO          | Accident       | SW3                      | CGF             | N/A                | N/A                | 25                          |

|            |         |                     |       | r    | 1        | F    | 1       |     | 1   | 1   |
|------------|---------|---------------------|-------|------|----------|------|---------|-----|-----|-----|
| 1/25/1994  | US      | Lexington, KY       | AIDS  | LDVO | Incident | SW2  | LEX     | N/A | N/A | N/R |
| 2/10/1994  | US      | Chicago, IL         | AIDS  | LDVO | Incident | FA50 | ORD     | N/A | N/A | N/R |
| 2/24/1994  | US      | Teterboro, NJ       | AIDS  | LDVO | Incident | WW24 | TEB     | N/A | N/A | N/R |
| 4/14/1994  | US      | Lincoln, NE         | AIDS  | LDVO | Incident | FA10 | LNK     | N/A | N/A | N/R |
| 5/15/1994  | US      | Coeur D Alene, ID   | AIDS  | LDVO | Incident | SW4  | COE     | N/A | N/A | N/R |
| 6/8/1994   | US      | Beckley, WV         | AIDS  | LDVO | Incident | MU30 | BKW     | N/A | N/A | N/R |
| 6/30/1994  | US      | Gambell, AK         | AIDS  | LDVO | Incident | BE18 | GAM     | N/A | N/A | N/R |
| 7/6/1994   | US      | Point Lookout, MO   | AIDS  | LDVO | Incident | BE20 | PLK     | N/A | N/A | N/R |
| 7/7/1994   | US      | Las Vegas, NV       | AIDS  | LDVO | Incident | C402 | LAS     | N/A | N/A | N/R |
| 7/17/1994  | US      | Plymouth, FL        | AIDS  | LDVO | Incident |      | X04     | N/A | N/A | N/R |
| 7/27/1994  | US      | Sioux Falls, SD     | AIDS  | LDVO | Incident | T18  | FSD     | N/A | N/A | N/R |
| 8/13/1994  | US      | Santa Fe, NM        | AIDS  | LDVO | Incident |      | SAF     | N/A | N/A | N/R |
| 8/28/1994  | US      | Oakland, CA         | AIDS  | LDVO | Incident | LJ24 | OAK     | N/A | N/A | N/R |
| 8/31/1994  | US      | Fort Smith, AR      | AIDS  | LDVO | Incident | BE20 | FSM     | N/A | N/A | N/R |
| 9/2/1994   | US      | Chicago, IL         | AIDS  | LDVO | Incident | DC91 | MDW     | N/A | N/A | N/R |
| 9/17/1994  | US      | Parkersburg, WV     | AIDS  | LDVO | Incident | WW24 | PKB     | N/A | N/A | N/R |
| 9/26/1994  | US      | Fort Lauderdale, FL | MITRE | LDVO | Incident | C402 | FLL     | N/A | N/A | 60  |
| 10/17/1994 | US      | Grand Canyon, AZ    | MITRE | LDVO | Incident | C402 | GCN     | N/A | N/A | 50  |
| 10/20/1994 | US      | Dyersburg, TN       | AIDS  | LDVO | Incident | SBR1 | DYR     | N/A | N/A | N/R |
| 10/25/1994 | US      | Shreveport, LA      | AIDS  | LDVO | Incident | BE18 | SHV     | N/A | N/A | N/R |
| 10/26/1994 | Unknown | Unknown             | AIDS  | LDVO | Incident | BE18 | Unknown | N/A | N/A | N/R |
| 10/27/1994 | US      | Washington, PA      | AIDS  | LDVO | Incident | SW3  | AFJ     | N/A | N/A | N/R |
| 11/1/1994  | US      | Fort Lauderdale, FL | MITRE | LDVO | Incident | C402 | FLL     | N/A | N/A | N/R |
| 11/15/1994 | US      | Fort Lauderdale, FL | AIDS  | LDVO | Incident | B731 | FLL     | N/A | N/A | N/R |
| 11/23/1994 | US      | Akron, OH           | AIDS  | LDVO | Incident | AC90 | CAK     | N/A | N/A | N/R |
| 12/13/1994 | US      | Chicago, IL         | AIDS  | LDVO | Incident | SBR1 | DPA     | N/A | N/A | N/R |
| 1/10/1995  | US      | Cahokia, IL         | AIDS  | LDVO | Incident | FA20 | CPS     | N/A | N/A | N/R |
| 1/26/1995  | US      | Lexington, KY       | AIDS  | LDVO | Incident | SW4  | LEX     | N/A | N/A | 35  |
| 1/31/1995  | US      | Chinle, AZ          | AIDS  | LDVO | Accident | C421 | E91     | N/A | N/A | N/R |
| 3/3/1995   | US      | Salt Lake City, UT  | AIDS  | LDVO | Incident | SW4  | SLC     | N/A | N/A | N/R |
| 3/7/1995   | US      | Tupelo, MS          | AIDS  | LDVO | Incident | H25A | TUP     | N/A | N/A | N/R |
| 4/10/1995  | US      | Dallas, TX          | AIDS  | LDVO | Incident | C402 | DAL     | N/A | N/A | N/R |

| Date       | Country     | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-------------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 5/2/1995   | US          | Shreveport, LA   | AIDS   | LDVO          | Incident       | BE18                     | SHV             | N/A                | N/A                | N/R                         |
| 5/5/1995   | US          | Rapid City, SD   | AIDS   | LDVO          | Incident       | AC90                     | RAP             | N/A                | N/A                | N/R                         |
| 5/17/1995  | US          | Shreveport, LA   | AIDS   | LDVO          | Incident       | BE18                     | SHV             | N/A                | N/A                | N/R                         |
| 6/3/1995   | US          | Susanville, CA   | AIDS   | LDVO          | Incident       | C421                     | SVE             | N/A                | N/A                | N/R                         |
| 6/7/1995   | US          | Omaha, NE        | AIDS   | LDVO          | Incident       | STAR                     | OMA             | N/A                | N/A                | N/R                         |
| 6/30/1995  | US          | Saginaw, MI      | AIDS   | LDVO          | Incident       | FA10                     | MBS             | N/A                | N/A                | N/R                         |
| 7/17/1995  | US          | Allentown, PA    | AIDS   | LDVO          | Incident       | F28                      | ABE             | N/A                | N/A                | N/R                         |
| 7/24/1995  | US          | Binghamton, NY   | AIDS   | LDVO          | Incident       | LJ55                     | BGM             | N/A                | N/A                | N/R                         |
| 8/1/1995   | US          | Van Nuys, CA     | MITRE  | LDVO          | Incident       | B752                     | VNY             | N/A                | N/A                | N/R                         |
| 8/3/1995   | US          | Portland, OR     | MITRE  | LDVO          | Incident       | D328                     | PDX             | N/A                | N/A                | 62                          |
| 8/3/1995   | US          | Portland, OR     | NTSB   | LDVO          | Accident       | D328                     | PDX             | N/A                | N/A                | N/R                         |
| 8/14/1995  | US          | Denver, CO       | MITRE  | LDVO          | Accident       | B752                     | APA             | N/A                | N/A                | N/R                         |
| 8/18/1995  | US          | Columbus, OH     | AIDS   | LDVO          | Incident       | B731                     | СМН             | N/A                | N/A                | N/R                         |
| 9/14/1995  | US          | Atlanta, GA      | AIDS   | LDVO          | Incident       | LJ24                     | PDK             | N/A                | N/A                | N/R                         |
| 9/16/1995  | US          | Charleston, SC   | AIDS   | LDVO          | Incident       | MD80                     | CHS             | N/A                | N/A                | N/R                         |
| 10/23/1995 | US          | San Juan, PR     | AIDS   | LDVO          | Incident       | C402                     | SJU             | N/A                | N/A                | N/R                         |
| 11/8/1995  | US          | Saginaw, MI      | AIDS   | LDVO          | Incident       | BE18                     | MBS             | N/A                | N/A                | N/R                         |
| 11/17/1995 | US          | Brenham, TX      | AIDS   | LDVO          | Incident       | WW24                     | 11R             | N/A                | N/A                | N/R                         |
| 11/21/1995 | US          | Rexburg, ID      | AIDS   | LDVO          | Incident       | BE30                     | RXE             | N/A                | N/A                | N/R                         |
| 12/10/1995 | Netherlands | Amsterdam        | NTSB   | LDVO          | Incident       | B742                     | EHAM            | N/A                | N/A                | N/R                         |
| 12/19/1995 | US          | Saint Louis, MO  | AIDS   | LDVO          | Incident       | DC91                     | STL             | N/A                | N/A                | N/R                         |
| 1/24/1996  | US          | Detroit, MI      | MITRE  | LDVO          | Accident       | FA10                     | DTW             | N/A                | N/A                | N/R                         |
| 1/26/1996  | US          | Atlanta, GA      | AIDS   | LDVO          | Incident       | E120                     | ATL             | N/A                | N/A                | 0                           |
| 1/31/1996  | US          | Morristown, NJ   | AIDS   | LDVO          | Incident       | WW24                     | MMU             | N/A                | N/A                | N/R                         |
| 2/2/1996   | US          | Memphis, TN      | AIDS   | LDVO          | Incident       | CVLP                     | MEM             | N/A                | N/A                | N/R                         |
| 2/28/1996  | US          | Grand Canyon, AZ | MITRE  | LDVO          | Accident       | PA31                     | GCN             | N/A                | N/A                | N/R                         |
| 3/20/1996  | US          | Portland, TN     | AIDS   | LDVO          | Incident       | LJ25                     | PLD             | N/A                | N/A                | 75                          |
| 4/2/1996   | US          | Beckley, WV      | AIDS   | LDVO          | Incident       | SH33                     | BKW             | N/A                | N/A                | N/R                         |
| 4/6/1996   | US          | Birmingham, AL   | AIDS   | LDVO          | Incident       | H25A                     | EGBB            | N/A                | N/A                | N/R                         |
| 4/20/1996  | US          | Albuquerque, NM  | AIDS   | LDVO          | Incident       |                          | AEG             | N/A                | N/A                | N/R                         |
| 5/1/1996   | US          | Denver, CO       | AIDS   | LDVO          | Incident       | SBR1                     | DEN             | N/A                | N/A                | N/R                         |
| 5/10/1996  | US          | Dallas, TX       | NTSB   | LDVO          | Incident       | B733                     | DFW             | N/A                | N/A                | 75                          |

| 5/16/1996  | US      | Houston, TX         | MITRE | LDVO | Accident | MU2   | HOU     | N/A | N/A | N/R |
|------------|---------|---------------------|-------|------|----------|-------|---------|-----|-----|-----|
| 7/5/1996   | US      | Moultonboro, NH     | AIDS  | LDVO | Incident | C414  | 5M3     | N/A | N/A | 175 |
| 7/27/1996  | US      | Saint Paul, MN      | AIDS  | LDVO | Incident | CONI  | STP     | N/A | N/A | N/R |
| 8/3/1996   | US      | West Palm Beach, FL | AIDS  | LDVO | Incident | B731  | PBI     | N/A | N/A | N/R |
| 9/30/1996  | US      | Aspen, CO           | MITRE | LDVO | Accident | ASTR  | ASE     | N/A | N/A | N/R |
| 10/9/1996  | US      | Pittsburgh, PA      | AIDS  | LDVO | Incident | LJ25  | AGC     | N/A | N/A | N/R |
| 12/11/1996 | US      | Grand Forks, ND     | AIDS  | LDVO | Incident | LJ35  | GFK     | N/A | N/A | N/R |
| 12/15/1996 | US      | Honolulu, HI        | NTSB  | LDVO | Accident | DH8A  | HNL     | N/A | N/A | N/R |
| 12/20/1996 | US      | Denver, CO          | AIDS  | LDVO | Incident | LJ25  | DEN     | N/A | N/A | N/R |
| 1/3/1997   | US      | Watertown, SD       | AIDS  | LDVO | Incident | WW24  | ATY     | N/A | N/A | N/R |
| 1/3/1997   | England | Liverpool           | AAIB  | LDVO | Accident | SH33  | EGGP    | N/A | N/A | N/R |
| 1/8/1997   | US      | El Paso, TX         | AIDS  | LDVO | Incident | FA20  | ELP     | N/A | N/A | N/R |
| 1/16/1997  | US      | Terre Haute, IN     | AIDS  | LDVO | Incident | DC85  | HUF     | N/A | N/A | 20  |
| 1/23/1997  | US      | Lebanon, MO         | AIDS  | LDVO | Incident | C402  | LBO     | N/A | N/A | N/R |
| 1/24/1997  | US      | Washington, IN      | AIDS  | LDVO | Incident | C500  | DCY     | N/A | N/A | 22  |
| 1/24/1997  | US      | Chicago, IL         | AIDS  | LDVO | Incident | C550  | Unknown | N/A | N/A | N/R |
| 2/2/1997   | US      | Grand Forks, ND     | AIDS  | LDVO | Incident | DC91  | GFK     | N/A | N/A | N/R |
| 2/5/1997   | US      | New York, NY        | AIDS  | LDVO | Incident | B741  | JFK     | N/A | N/A | N/R |
| 2/14/1997  | US      | Ames, IA            | AIDS  | LDVO | Incident | SW4   | AMW     | N/A | N/A | N/R |
| 2/22/1997  | US      | Alma, MI            | AIDS  | LDVO | Incident | C550  | AMN     | N/A | N/A | N/R |
| 3/4/1997   | US      | Abilene, TX         | MITRE | LDVO | Incident | SW4   | ABI     | N/A | N/A | 5   |
| 3/5/1997   | US      | Cleveland, OH       | NTSB  | LDVO | Accident |       | CLE     | N/A | N/A | 115 |
| 3/10/1997  | US      | Boise, ID           | AIDS  | LDVO | Incident | WW24  | BOI     | N/A | N/A | 230 |
| 3/20/1997  | US      | Hailey, ID          | MITRE | LDVO | Accident | SBR1  | SUN     | N/A | N/A | N/R |
| 3/27/1997  | US      | San Carlos, CA      | MITRE | LDVO | Accident | BE10  | SQL     | N/A | N/A | N/R |
| 4/18/1997  | US      | Rangeley, ME        | AIDS  | LDVO | Incident | BE20  | 8B0     | N/A | N/A | N/R |
| 5/14/1997  | US      | Arcata, CA          | AIDS  | LDVO | Incident | JS431 | ACV     | N/A | N/A | N/R |
| 5/19/1997  | US      | New Orleans, LA     | AIDS  | LDVO | Incident | B721  | MSY     | N/A | N/A | N/R |
| 7/21/1997  | US      | Elko, NV            | MITRE | LDVO | Accident | DHC6  | EKO     | N/A | N/A | N/R |
| 7/31/1997  | US      | Newark, NJ          | MITRE | LDVO | Accident | MD11  | EWR     | N/A | N/A | 505 |
| 8/13/1997  | US      | Seattle, WA         | MITRE | LDVO | Accident | B190  | SEA     | N/A | N/A | 37  |
| 9/24/1997  | US      | Lake Charles, LA    | AIDS  | LDVO | Incident | BE20  | CWF     | N/A | N/A | N/R |

| Date       | Country     | City/State          | Source         | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-------------|---------------------|----------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 9/24/1997  | US          | Salt Lake City, UT  | NTSB           | LDVO          | Incident       | B732                     | SLC             | N/A                | N/A                | 75                          |
| 11/25/1997 | US          | Billings, MT        | NTSB           | LDVO          | Accident       | SH36                     | BIL             | N/A                | N/A                | 765                         |
| 12/11/1997 | US          | Chicago, IL         | AIDS           | LDVO          | Incident       | C560                     | PWK             | N/A                | N/A                | N/R                         |
| 12/24/1997 | Netherlands | Amsterdam           | Netherland TSB | LDVO          | Accident       | B752                     | EHAM            | N/A                | N/A                | 20                          |
| 12/27/1997 | US          | Denver, CO          | AIDS           | LDVO          | Incident       | SW3                      | APA             | N/A                | N/A                | N/R                         |
| 12/29/1997 | US          | Newburgh, NY        | AIDS           | LDVO          | Incident       | MD80                     | SWF             | N/A                | N/A                | N/R                         |
| 1/8/1998   | US          | Chicago, IL         | AIDS           | LDVO          | Incident       | LJ35                     | PWK             | N/A                | N/A                | N/R                         |
| 1/20/1998  | US          | Saranac Lake, NY    | NTSB           | LDVO          | Accident       | B190                     | SLK             | N/A                | N/A                | 15                          |
| 2/22/1998  | US          | Lawton, OK          | MITRE          | LDVO          | Incident       | SF34                     | LAW             | N/A                | N/A                | 75                          |
| 2/26/1998  | US          | Birmingham, AL      | MITRE          | LDVO          | Accident       | F28                      | BHM             | N/A                | N/A                | 235                         |
| 2/26/1998  | US          | Birmingham, AL      | NTSB           | LDVO          | Accident       | F28                      | BHM             | N/A                | N/A                | N/R                         |
| 2/27/1998  | England     | Leeds               | AAIB           | LDVO          | Incident       | SF34                     | EGNM            | N/A                | N/A                | N/R                         |
| 3/10/1998  | US          | Cleveland, OH       | AIDS           | LDVO          | Incident       | MD80                     | CLE             | N/A                | N/A                | 5                           |
| 3/18/1998  | US          | Denver, CO          | AIDS           | LDVO          | Incident       | LJ25                     | APA             | N/A                | N/A                | N/R                         |
| 3/31/1998  | US          | Des Moines, IA      | AIDS           | LDVO          | Incident       | B721                     | DSM             | N/A                | N/A                | N/R                         |
| 4/1/1998   | US          | Las Vegas, NV       | AIDS           | LDVO          | Incident       | C402                     | VGT             | N/A                | N/A                | N/R                         |
| 4/3/1998   | US          | West Palm Beach, FL | MITRE          | LDVO          | Accident       | C402                     | PBI             | N/A                | N/A                | N/R                         |
| 6/19/1998  | US          | Fishers Island, NY  | AIDS           | LDVO          | Incident       | C500                     | 0B8             | N/A                | N/A                | N/R                         |
| 8/5/1998   | US          | Bend, OR            | AIDS           | LDVO          | Incident       | C421                     | S21             | N/A                | N/A                | 55                          |
| 8/12/1998  | US          | Kneeland, CA        | AIDS           | LDVO          | Incident       | PA31                     | 019             | N/A                | N/A                | N/R                         |
| 8/17/1998  | US          | Nome, AK            | AIDS           | LDVO          | Incident       | C402                     | OME             | N/A                | N/A                | 10                          |
| 9/4/1998   | US          | Springdale, AR      | AIDS           | LDVO          | Incident       | C402                     | ASG             | N/A                | N/A                | N/R                         |
| 9/11/1998  | US          | Houston, TX         | NTSB           | LDVO          | Accident       | B763                     | EFD             | N/A                | N/A                | N/R                         |
| 9/12/1998  | US          | Hot Springs, AR     | AIDS           | LDVO          | Incident       | SW4                      | HOT             | N/A                | N/A                | N/R                         |
| 9/13/1998  | US          | Las Vegas, NV       | AIDS           | LDVO          | Incident       | SW3                      | VGT             | N/A                | N/A                | N/R                         |
| 9/16/1998  | Mexico      | Guadalajara         | NTSB           | LDVO          | Accident       | B735                     | MMGL            | N/A                | N/A                | 6                           |
| 9/28/1998  | US          | Pueblo, CO          | MITRE          | LDVO          | Accident       | C551                     | PUB             | N/A                | N/A                | N/R                         |
| 10/1/1998  | US          | Denver, CO          | AIDS           | LDVO          | Incident       | CL60                     | DEN             | N/A                | N/A                | N/R                         |
| 11/1/1998  | US          | Atlanta, GA         | MITRE          | LDVO          | Accident       | B731                     | ATL             | N/A                | N/A                | 235                         |
| 11/1/1998  | US          | Atlanta, GA         | NTSB           | LDVO          | Accident       | B732                     | ATL             | N/A                | N/A                | N/R                         |
| 11/8/1998  | US          | Amarillo, TX        | AIDS           | LDVO          | Incident       | B731                     | AMA             | N/A                | N/A                | N/R                         |
| 11/27/1998 | US          | Austin, TX          | MITRE          | LDVO          | Accident       | L29A                     | AUS             | N/A                | N/A                | 135                         |

| 12/10/1998 | US                  | Charlotte Amalie, VI | MITRE     | LDVO | Accident | BE18 | STT     | N/A | N/A | N/R |
|------------|---------------------|----------------------|-----------|------|----------|------|---------|-----|-----|-----|
| 12/10/1998 | US                  | Monroe, MI           | AIDS      | LDVO | Incident | SW3  | TTF     | N/A | N/A | N/R |
| 12/17/1998 | US                  | Traverse City, MI    | MITRE     | LDVO | Accident | AT43 | TVC     | N/A | N/A | 85  |
| 12/17/1998 | US                  | Traverse City, MI    | NTSB      | LDVO | Accident | AT43 | TVC     | N/A | N/A | N/R |
| 12/17/1998 | US                  | Los Angeles, CA      | MITRE     | LDVO | Accident | LJ55 | LAX     | N/A | N/A | N/R |
| 12/20/1998 | US                  | Denver, CO           | AIDS      | LDVO | Incident | H25B | APA     | N/A | N/A | N/R |
| 12/26/1998 | US                  | Jackson, WY          | AIDS      | LDVO | Incident | B731 | JAC     | N/A | N/A | N/R |
| 12/27/1998 | US                  | Weiser, ID           | AIDS      | LDVO | Incident | BE20 | S87     | N/A | N/A | N/R |
| 1/2/1999   | US                  | Springfield, MO      | AIDS      | LDVO | Incident |      | SGF     | N/A | N/A | N/R |
| 1/3/1999   | US                  | Muskegon, MI         | AIDS      | LDVO | Incident | B190 | MKG     | N/A | N/A | N/R |
| 1/6/1999   | US                  | Plymouth, IN         | NTSB      | LDVO | Accident | AC50 | C65     | N/A | N/A | 20  |
| 1/8/1999   | US                  | Columbus, OH         | AIDS      | LDVO | Incident | MD80 | CMH     | N/A | N/A | N/R |
| 1/14/1999  | US                  | Youngstown, OH       | NTSB      | LDVO | Accident | C421 | YNG     | N/A | N/A | N/R |
| 1/14/1999  | US                  | Youngstown, OH       | MITRE     | LDVO | Accident | C421 | YNG     | N/A | N/A | 5   |
| 1/22/1999  | US                  | Hyannis, MA          | MITRE     | LDVO | Accident | B190 | HYA     | N/A | N/A | 10  |
| 1/22/1999  | US                  | Columbus, OH         | MITRE     | LDVO | Accident | C650 | СМН     | N/A | N/A | 75  |
| 1/22/1999  | US                  | Oakland, CA          | AIDS      | LDVO | Incident | LJ25 | OAK     | N/A | N/A | N/R |
| 2/13/1999  | US                  | State College, PA    | AIDS      | LDVO | Incident | JS31 | UNV     | N/A | N/A | N/R |
| 2/17/1999  | Bahamas             | Nassau               | NTSB      | LDVO | Accident | DC3  | MYNN    | N/A | N/A | N/R |
| 2/24/1999  | Unknown             | Unknown              | AIDS      | LDVO | Incident | SW3  | Unknown | N/A | N/A | N/R |
| 3/18/1999  | US                  | Lincoln, NE          | AIDS      | LDVO | Incident | LJ25 | LNK     | N/A | N/A | N/R |
| 4/23/1999  | Papua New<br>Guinea | Freida River         | NTSB      | LDVO | Accident | DHC6 | FAQ     | N/A | N/A | N/R |
| 5/14/1999  | US                  | Hickory, NC          | MITRE     | LDVO | Accident | BE10 | HKY     | N/A | N/A | 195 |
| 5/18/1999  | US                  | Georgetown, SC       | AIDS      | LDVO | Incident | BE20 | GGE     | N/A | N/A | N/R |
| 5/21/1999  | US                  | Midland, TX          | AIDS      | LDVO | Incident | F27  | MAF     | N/A | N/A | N/R |
| 5/21/1999  | US                  | South Bend, IN       | AIDS      | LDVO | Incident | F28  | SBN     | N/A | N/A | N/R |
| 8/16/1999  | US                  | Fort Lauderdale, FL  | MITRE     | LDVO | Accident | CL60 | FXE     | N/A | N/A | 50  |
| 9/14/1999  | Spain               | Girona               | Spain TSB | LDVO | Accident | B752 | LEGE    | N/A | N/A | 408 |
| 10/11/1999 | US                  | Miami, FL            | MITRE     | LDVO | Accident | SW4  | OPF     | N/A | N/A | N/R |
| 11/7/1999  | Spain               | Barcelona            | Spain TSB | LDVO | Accident | F100 | LEBL    | N/A | N/A | 254 |
| 11/12/1999 | US                  | Fremont, OH          | AIDS      | LDVO | Incident | SW3  | S24     | N/A | N/A | 50  |

| Date       | Country   | City/State       | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-----------|------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 11/18/1999 | US        | Lawrence, KS     | AIDS   | LDVO          | Incident       | SW4                      | LWC             | N/A                | N/A                | N/R                         |
| 11/27/1999 | US        | Boise, ID        | MITRE  | LDVO          | Accident       | FA20                     | BOI             | N/A                | N/A                | N/R                         |
| 12/21/1999 | Guatemala | Guatemala        | BEA    | LDVO          | Accident       | DC10                     | MGGT            | N/A                | N/A                | 58                          |
| 1/28/2000  | US        | Newark, NJ       | AIDS   | LDVO          | Incident       | B731                     | EWR             | N/A                | N/A                | 150                         |
| 1/28/2000  | US        | Fayetteville, AR | MITRE  | LDVO          | Accident       | SW4                      | FYV             | N/A                | N/A                | N/R                         |
| 2/15/2000  | US        | Escanaba, MI     | NTSB   | LDVO          | Accident       | B190                     | ESC             | N/A                | N/A                | 75                          |
| 2/16/2000  | US        | Palm Springs, CA | AIDS   | LDVO          | Incident       | MD80                     | PSP             | N/A                | N/A                | N/R                         |
| 2/25/2000  | US        | Atlanta, GA      | AIDS   | LDVO          | Incident       | LJ25                     | FTY             | N/A                | N/A                | N/R                         |
| 3/6/2000   | US        | Adrian, MI       | AIDS   | LDVO          | Incident       | PA31                     | ADG             | N/A                | N/A                | N/R                         |
| 4/2/2000   | US        | Yap, FM          | AIDS   | LDVO          | Incident       | B721                     | YAP             | N/A                | N/A                | N/R                         |
| 4/4/2000   | US        | Miami, FL        | MITRE  | LDVO          | Incident       | FA20                     | OPF             | N/A                | N/A                | N/R                         |
| 4/19/2000  | US        | Hyannis, MA      | AIDS   | LDVO          | Incident       | LJ35                     | HYA             | N/A                | N/A                | N/R                         |
| 5/2/2000   | US        | Saint Paul, MN   | AIDS   | LDVO          | Incident       | C402                     | STP             | N/A                | N/A                | N/R                         |
| 5/2/2000   | France    | Lyon             | BEA    | LDVO          | Accident       | LJ35                     | LYS             | N/A                | N/A                | 500                         |
| 5/5/2000   | US        | Cahokia, IL      | AIDS   | LDVO          | Incident       | C402                     | CPS             | N/A                | N/A                | 1550                        |
| 5/8/2000   | US        | Nantucket, MA    | AIDS   | LDVO          | Incident       | C402                     | ACK             | N/A                | N/A                | N/R                         |
| 5/18/2000  | Barbados  | Bridgetown       | NTSB   | LDVO          | Incident       |                          | BGI             | N/A                | N/A                | N/R                         |
| 6/5/2000   | US        | Cedar Rapids, IA | AIDS   | LDVO          | Incident       | MD80                     | CID             | N/A                | N/A                | N/R                         |
| 6/7/2000   | US        | Birmingham, AL   | AIDS   | LDVO          | Incident       | SW4                      | EGBB            | N/A                | N/A                | N/R                         |
| 7/16/2000  | US        | Denver, CO       | AIDS   | LDVO          | Incident       | B190                     | DEN             | N/A                | N/A                | N/R                         |
| 8/24/2000  | US        | Milwaukee, WI    | AIDS   | LDVO          | Incident       | BE40                     | MKE             | N/A                | N/A                | N/R                         |
| 9/22/2000  | US        | Missoula, MT     | NTSB   | LDVO          | Accident       | BE99                     | MSO             | N/A                | N/A                | N/R                         |
| 9/26/2000  | US        | Charlotte, NC    | MITRE  | LDVO          | Accident       | DC3                      | CLT             | N/A                | N/A                | N/R                         |
| 9/29/2000  | US        | Show Low, AZ     | AIDS   | LDVO          | Incident       | C421                     | SOW             | N/A                | N/A                | N/R                         |
| 10/16/2000 | US        | Saint Louis, MO  | AIDS   | LDVO          | Incident       | MD80                     | STL             | N/A                | N/A                | N/R                         |
| 10/22/2000 | US        | Bethel, AK       | MITRE  | LDVO          | Accident       | B190                     | BET             | N/A                | N/A                | N/R                         |
| 10/29/2000 | Ireland   | Cork             | AAIU   | LDVO          | Incident       | F50                      | EICK            | N/A                | N/A                | 143                         |
| 11/5/2000  | France    | Paris            | BEA    | LDVO          | Accident       | B741                     | CDG             | N/A                | N/A                | 446                         |
| 11/10/2000 | US        | Dickinson, ND    | AIDS   | LDVO          | Incident       | B190                     | DIK             | N/A                | N/A                | N/R                         |
| 11/19/2000 | US        | Grand Rapids, MI | AIDS   | LDVO          | Incident       | DC91                     | GRR             | N/A                | N/A                | N/R                         |
| 12/13/2000 | US        | Pensacola, FL    | MITRE  | LDVO          | Accident       | C421                     | PNS             | N/A                | N/A                | N/R                         |
| 12/14/2000 | US        | Atlanta, GA      | AIDS   | LDVO          | Incident       | SW4                      | PDK             | N/A                | N/A                | N/R                         |

| 12/17/2000 | US      | Farmingdale, NY           | AIDS       | LDVO | Accident | BE10 | FRG  | N/A | N/A | N/R |
|------------|---------|---------------------------|------------|------|----------|------|------|-----|-----|-----|
| 12/22/2000 | US      | Holland, MI               | AIDS       | LDVO | Incident | FA10 | HLM  | N/A | N/A | N/R |
| 1/15/2001  | US      | Two Harbors, MN           | AIDS       | LDVO | Incident | BE20 | TWM  | N/A | N/A | N/R |
| 1/21/2001  | US      | New York, NY              | NTSB       | LDVO | Incident | A320 | JFK  | N/A | N/A | 15  |
| 2/7/2001   | Spain   | Balboa                    | Spain TSB  | LDVO | Accident | A320 | LEBB | N/A | N/A | 20  |
| 2/13/2001  | US      | Salina, KS                | AIDS       | LDVO | Incident | C650 | SLN  | N/A | N/A | N/R |
| 2/20/2001  | US      | Manassas, VA              | AIDS       | LDVO | Incident | SF34 | HEF  | N/A | N/A | N/R |
| 3/3/2001   | US      | Fort Lauderdale, FL       | MITRE      | LDVO | Accident | C402 | FLL  | N/A | N/A | 30  |
| 3/9/2001   | US      | Denver, CO                | AIDS       | LDVO | Incident | D328 | DEN  | N/A | N/A | N/R |
| 3/16/2001  | US      | Cedar Rapids, IA          | AIDS       | LDVO | Incident | B721 | CID  | N/A | N/A | N/R |
| 3/18/2001  | US      | Monument Valley, UT       | AIDS       | LDVO | Incident | DHC6 | UT25 | N/A | N/A | 88  |
| 3/24/2001  | US      | Pittsburgh, PA            | AIDS       | LDVO | Incident | E145 | PIT  | N/A | N/A | N/R |
| 4/19/2001  | US      | Denver, CO                | AIDS       | LDVO | Incident | H25B | APA  | N/A | N/A | N/R |
| 4/26/2001  | US      | Saint George, UT          | AIDS       | LDVO | Incident | LJ25 | SGU  | N/A | N/A | N/R |
| 6/4/2001   | US      | Las Vegas, NV             | MITRE      | LDVO | Accident | PA31 | VGT  | N/A | N/A | N/R |
| 6/10/2001  | US      | Miami, FL                 | AIDS       | LDVO | Incident | BE18 | OPF  | N/A | N/A | N/R |
| 6/12/2001  | US      | Kotzebue, AK              | AIDS       | LDVO | Incident | B731 | OTZ  | N/A | N/A | N/R |
| 7/10/2001  | England | Exeter                    | AAIB       | LDVO | Incident | AN12 | EGTE | N/A | N/A | N/R |
| 8/25/2001  | US      | Kansas City, MO           | MITRE      | LDVO | Accident | B731 | MCI  | N/A | N/A | 30  |
| 10/24/2001 | Canada  | Peace River, AB           | Canada TSB | LDVO | Incident | DH8A | CYPE | N/A | N/A | 176 |
| 11/29/2001 | US      | Flagstaff, AZ             | NTSB       | LDVO | Accident | BE99 | FLG  | N/A | N/A | N/R |
| 1/5/2002   | US      | Sacramento, CA            | AIDS       | LDVO | Incident | B731 | SMF  | N/A | N/A | N/R |
| 1/10/2002  | US      | Fort Collins/Loveland, CO | AIDS       | LDVO | Incident | LJ35 | FNL  | N/A | N/A | N/R |
| 2/3/2002   | Ireland | Dublin                    | AAIU       | LDVO | Incident | MD11 | EIDW | N/A | N/A | 12  |
| 3/4/2002   | US      | Chicago, IL               | AIDS       | LDVO | Incident | BE20 | DPA  | N/A | N/A | N/R |
| 3/12/2002  | US      | Albuquerque, NM           | MITRE      | LDVO | Accident | C402 | ABQ  | N/A | N/A | N/R |
| 3/13/2002  | US      | Salt Lake City, UT        | AIDS       | LDVO | Incident | LJ25 | SLC  | N/A | N/A | 15  |
| 3/17/2002  | US      | Laramie, WY               | AIDS       | LDVO | Incident | BE20 | LAR  | N/A | N/A | N/R |
| 3/27/2002  | Canada  | Toronto, ON               | Canada TSB | LDVO | Incident | F28  | CYYZ | N/A | N/A | 15  |
| 3/28/2002  | US      | Jackson, WY               | AIDS       | LDVO | Incident | GLF4 | JAC  | N/A | N/A | N/R |
| 4/16/2002  | Canada  | Winnipeg, MB              | Canada TSB | LDVO | Accident | SW3  | CYWG | N/A | N/A | 0   |
| 5/10/2002  | US      | Meridian, MS              | AIDS       | LDVO | Incident | SW2  | MEI  | N/A | N/A | 100 |

| Date       | Country | City/State           | Source     | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|----------------------|------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 6/15/2002  | US      | Fort Lauderdale, FL  | AIDS       | LDVO          | Incident       | SW3                      | FXE             | N/A                | N/A                | N/R                         |
| 6/19/2002  | US      | Prineville, OR       | AIDS       | LDVO          | Incident       | BE30                     | S39             | N/A                | N/A                | N/R                         |
| 7/25/2002  | US      | Columbia, SC         | AIDS       | LDVO          | Incident       | D328                     | CAE             | N/A                | N/A                | N/R                         |
| 8/28/2002  | US      | Phoenix, AZ          | NTSB       | LDVO          | Accident       | A320                     | PHX             | N/A                | N/A                | N/R                         |
| 9/7/2002   | Spain   | Madrid               | Spain TSB  | LDVO          | Incident       | A346                     | LEMD            | N/A                | N/A                | 33                          |
| 9/15/2002  | US      | Rock Springs, WY     | NTSB       | LDVO          | Accident       | B190                     | RKS             | N/A                | N/A                | N/R                         |
| 9/21/2002  | US      | Fort Lauderdale, FL  | AIDS       | LDVO          | Incident       | GA7                      | FLL             | N/A                | N/A                | N/R                         |
| 11/22/2002 | US      | Fort Lauderdale, FL  | AIDS       | LDVO          | Accident       | SW4                      | FLL             | N/A                | N/A                | N/R                         |
| 1/6/2003   | US      | Chicago, IL          | AIDS       | LDVO          | Incident       | C525                     | MDW             | N/A                | N/A                | N/R                         |
| 2/2/2003   | Canada  | Enfield, NS          | Canada TSB | LDVO          | Incident       | B731                     | CYHZ            | N/A                | N/A                | 0                           |
| 2/7/2003   | US      | Mountain Village, AK | AIDS       | LDVO          | Incident       | C402                     | MOU             | N/A                | N/A                | N/R                         |
| 2/15/2003  | US      | Marietta, GA         | AIDS       | LDVO          | Incident       | SBR1                     | RYY             | N/A                | N/A                | N/R                         |
| 2/16/2003  | US      | Cahokia, IL          | MITRE      | LDVO          | Accident       | SW3                      | CPS             | N/A                | N/A                | N/R                         |
| 2/20/2003  | US      | Pierre, SD           | AIDS       | LDVO          | Incident       | H25B                     | PIR             | N/A                | N/A                | N/R                         |
| 2/28/2003  | US      | Oakland, CA          | AIDS       | LDVO          | Incident       | BE99                     | OAK             | N/A                | N/A                | N/R                         |
| 3/2/2003   | US      | Reno, NV             | AIDS       | LDVO          | Incident       | SBR1                     | RNO             | N/A                | N/A                | N/R                         |
| 3/8/2003   | US      | Kinston, NC          | MITRE      | LDVO          | Accident       | F27                      | ISO             | N/A                | N/A                | 75                          |
| 3/25/2003  | US      | Columbus, OH         | AIDS       | LDVO          | Incident       | BE20                     | OSU             | N/A                | N/A                | N/R                         |
| 4/16/2003  | US      | Yuma, AZ             | AIDS       | LDVO          | Incident       | C421                     | NYL             | N/A                | N/A                | N/R                         |
| 4/17/2003  | US      | Fort Lauderdale, FL  | AIDS       | LDVO          | Incident       | SBR1                     | FXE             | N/A                | N/A                | N/R                         |
| 5/24/2003  | US      | Amarillo, TX         | MITRE      | LDVO          | Accident       | B731                     | AMA             | N/A                | N/A                | N/R                         |
| 5/28/2003  | US      | Detroit, MI          | AIDS       | LDVO          | Incident       | MU2                      | DET             | N/A                | N/A                | N/R                         |
| 7/3/2003   | US      | Carlsbad, CA         | AIDS       | LDVO          | Incident       | F900                     | CRQ             | N/A                | N/A                | N/R                         |
| 8/9/2003   | US      | Fort Lauderdale, FL  | AIDS       | LDVO          | Incident       | SBR1                     | FXE             | N/A                | N/A                | N/R                         |
| 9/3/2003   | US      | Richmond, VA         | AIDS       | LDVO          | Incident       | SW4                      | RIC             | N/A                | N/A                | N/R                         |
| 9/13/2003  | US      | Butte, MT            | AIDS       | LDVO          | Incident       | DH8A                     | BTM             | N/A                | N/A                | N/R                         |
| 9/22/2003  | US      | Gulfport, MS         | AIDS       | LDVO          | Incident       | B731                     | GPT             | N/A                | N/A                | N/R                         |
| 9/26/2003  | Canada  | Toronto, ON          | Canada TSB | LDVO          | Incident       | ASTR                     | CYYZ            | N/A                | N/A                | 350                         |
| 10/20/2003 | US      | Key West, FL         | AIDS       | LDVO          | Incident       | PA31                     | EYW             | N/A                | N/A                | N/R                         |
| 12/4/2003  | US      | Little Rock, AR      | AIDS       | LDVO          | Incident       | C560                     | LIT             | N/A                | N/A                | N/R                         |
| 12/15/2003 | US      | Bangor, ME           | AIDS       | LDVO          | Incident       | D228                     | BGR             | N/A                | N/A                | N/R                         |
| 12/18/2003 | US      | Memphis, TN          | MITRE      | LDVO          | Accident       | MD11                     | MEM             | N/A                | N/A                | N/R                         |

| 1/14/2004  | US        | Saint Louis, MO       | AIDS          | LDVO | Incident | FA10 | SUS  | N/A | N/A | N/R |
|------------|-----------|-----------------------|---------------|------|----------|------|------|-----|-----|-----|
| 1/15/2004  | Canada    | Dryden, ON            | Canada TSB    | LDVO | Incident | SW4  | CYHD | N/A | N/A | 30  |
| 1/17/2004  | US        | Rapid City, SD        | NTSB          | LDVO | Incident | CL60 | RAP  | N/A | N/A | N/R |
| 1/21/2004  | US        | Pueblo, CO            | MITRE         | LDVO | Accident | FA20 | PUB  | N/A | N/A | 150 |
| 1/24/2004  | Singapore | Singapore             | Singapore AAI | LDVO | Incident | B772 | WSSS | N/A | N/A | 20  |
| 1/29/2004  | US        | Huntsville, AL        | AIDS          | LDVO | Incident | CVLP | HSV  | N/A | N/A | N/R |
| 2/6/2004   | US        | Richmond, VA          | AIDS          | LDVO | Incident | C560 | FCI  | N/A | N/A | 20  |
| 2/6/2004   | US        | Kansas City, MO       | AIDS          | LDVO | Incident | C550 | МКС  | N/A | N/A | N/R |
| 2/15/2004  | US        | Chicago, IL           | AIDS          | LDVO | Incident | LJ35 | DPA  | N/A | N/A | N/R |
| 2/25/2004  | Canada    | Edmonton, AB          | Canada TSB    | LDVO | Incident | B731 | CYEG | N/A | N/A | 185 |
| 3/3/2004   | US        | Saint Paul Island, AK | AIDS          | LDVO | Incident | SW4  | SNP  | N/A | N/A | N/R |
| 3/4/2004   | US        | Springdale, AR        | MITRE         | LDVO | Accident | BE20 | ASG  | N/A | N/A | N/R |
| 3/4/2004   | US        | Broomfield, CO        | AIDS          | LDVO | Incident | F900 | BJC  | N/A | N/A | N/R |
| 3/15/2004  | US        | Manhattan, KS         | NTSB          | LDVO | Accident | B190 | МНК  | N/A | N/A | 5   |
| 3/19/2004  | US        | Utica, NY             | MITRE         | LDVO | Accident | LJ35 | UCA  | N/A | N/A | 20  |
| 3/31/2004  | US        | Fort Lauderdale, FL   | NTSB          | LDVO | Accident | C402 | FXE  | N/A | N/A | N/R |
| 5/9/2004   | US        | San Juan, PR          | NTSB          | LDVO | Accident | AT72 | SJU  | N/A | N/A | 112 |
| 5/11/2004  | US        | Roseau, MN            | AIDS          | LDVO | Incident | BE9L | ROX  | N/A | N/A | N/R |
| 5/15/2004  | US        | Oakland, CA           | AIDS          | LDVO | Incident | AC52 | OAK  | N/A | N/A | N/R |
| 6/11/2004  | US        | Dallas, TX            | NTSB          | LDVO | Incident | E135 | DFW  | N/A | N/A | N/R |
| 6/14/2004  | US        | Pittsburgh, PA        | AIDS          | LDVO | Incident | B731 | PIT  | N/A | N/A | N/R |
| 6/16/2004  | US        | Indianapolis, IN      | AIDS          | LDVO | Incident | C550 | TYQ  | N/A | N/A | N/R |
| 8/10/2004  | US        | Grand Canyon, AZ      | AIDS          | LDVO | Incident | DHC6 | GCN  | N/A | N/A | N/R |
| 8/31/2004  | Canada    | Moncton, NB           | Canada TSB    | LDVO | Incident | B721 | CCG4 | N/A | N/A | 200 |
| 9/3/2004   | US        | Houston, TX           | AIDS          | LDVO | Incident | GLF2 | HOU  | N/A | N/A | N/R |
| 9/21/2004  | Canada    | La Ronge, SK          | Canada TSB    | LDVO | Accident | SW4  | CYVC | N/A | N/A | 275 |
| 9/21/2004  | US        | Garden City, KS       | AIDS          | LDVO | Incident | B190 | GCK  | N/A | N/A | N/R |
| 10/29/2004 | US        | Dubuque, IA           | AIDS          | LDVO | Incident | E145 | DBQ  | N/A | N/A | N/R |
| 11/5/2004  | US        | Houston, TX           | AIDS          | LDVO | Incident | WW24 | HOU  | N/A | N/A | N/R |
| 11/21/2004 | US        | Denver, CO            | AIDS          | LDVO | Incident | MD80 | DEN  | N/A | N/A | N/R |
| 11/29/2004 | US        | Eagle, CO             | MITRE         | LDVO | Accident | GLF4 | EGE  | N/A | N/A | N/R |
| 12/1/2004  | Canada    | Saint-Georges, QC     | Canada TSB    | LDVO | Accident | BE30 | CYSG | N/A | N/A | 95  |

| Date       | Country     | City/State           | Source         | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-------------|----------------------|----------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 12/4/2004  | US          | Mc Allen, TX         | MITRE          | LDVO          | Accident       | CVLT                     | MFE             | N/A                | N/A                | 475                         |
| 12/8/2004  | US          | Twin Falls, ID       | AIDS           | LDVO          | Incident       | SW3                      | TWF             | N/A                | N/A                | N/R                         |
| 12/9/2004  | US          | Atlanta, GA          | AIDS           | LDVO          | Incident       | B721                     | ATL             | N/A                | N/A                | N/R                         |
| 12/13/2004 | US          | Cleveland, OH        | AIDS           | LDVO          | Incident       | LJ35                     | BKL             | N/A                | N/A                | N/R                         |
| 12/14/2004 | US          | Cleveland, OH        | AIDS           | LDVO          | Incident       | MU30                     | CGF             | N/A                | N/A                | N/R                         |
| 12/19/2004 | Canada      | Gaspé, QC            | Canada TSB     | LDVO          | Accident       | PA31                     | CYGP            | N/A                | N/A                | 60                          |
| 12/20/2004 | US          | Cedar Rapids, IA     | MITRE          | LDVO          | Accident       | LJ25                     | CID             | N/A                | N/A                | 754                         |
| 12/24/2004 | Canada      | Kuujjuaq, QC         | Canada TSB     | LDVO          | Accident       | BE10                     | CYVP            | N/A                | N/A                | 40                          |
| 1/4/2005   | US          | Cleveland, OH        | MITRE          | LDVO          | Accident       | AC90                     | CGF             | N/A                | N/A                | N/R                         |
| 1/6/2005   | US          | Stillwater, OK       | AIDS           | LDVO          | Incident       | LJ35                     | SWO             | N/A                | N/A                | N/R                         |
| 1/20/2005  | Canada      | Calgary, AB          | Canada TSB     | LDVO          | Incident       | DC91                     | CYYC            | N/A                | N/A                | 40                          |
| 1/25/2005  | US          | Montrose, CO         | AIDS           | LDVO          | Incident       | SW4                      | MTJ             | N/A                | N/A                | N/R                         |
| 1/28/2005  | US          | Kansas City, MO      | AIDS           | LDVO          | Incident       | MD80                     | MCI             | N/A                | N/A                | N/R                         |
| 1/31/2005  | US          | Everett, WA          | AIDS           | LDVO          | Incident       | BE18                     | PAE             | N/A                | N/A                | N/R                         |
| 2/7/2005   | US          | Columbus, OH         | AIDS           | LDVO          | Incident       | MD80                     | СМН             | N/A                | N/A                | 5                           |
| 2/21/2005  | Canada      | Bromont, QC          | Canada TSB     | LDVO          | Accident       | H25A                     | CZBM            | N/A                | N/A                | 250                         |
| 3/11/2005  | US          | Milwaukee, WI        | MITRE          | LDVO          | Accident       | CL60                     | MKE             | N/A                | N/A                | 571                         |
| 3/23/2005  | US          | Brigham City, UT     | AIDS           | LDVO          | Incident       | LJ24                     | BMC             | N/A                | N/A                | N/R                         |
| 3/26/2005  | US          | El Paso, TX          | AIDS           | LDVO          | Incident       | C680                     | ELP             | N/A                | N/A                | N/R                         |
| 4/26/2005  | US          | Lawrenceville, GA    | MITRE          | LDVO          | Accident       | SW3                      | LZU             | N/A                | N/A                | N/R                         |
| 5/28/2005  | US          | Denver, CO           | AIDS           | LDVO          | Incident       | MD80                     | DEN             | N/A                | N/A                | N/R                         |
| 5/31/2005  | US          | Teterboro, NJ        | MITRE          | LDVO          | Accident       | SW3                      | TEB             | N/A                | N/A                | 30                          |
| 6/8/2005   | US          | Washington, DC       | MITRE          | LDVO          | Incident       | SF34                     | IAD             | N/A                | N/A                | 785                         |
| 6/15/2005  | US          | Charlotte Amalie, VI | AIDS           | LDVO          | Incident       | C402                     | STT             | N/A                | N/A                | N/R                         |
| 7/1/2005   | US          | Amarillo, TX         | MITRE          | LDVO          | Accident       | LJ25                     | AMA             | N/A                | N/A                | 150                         |
| 7/8/2005   | US          | Islesboro, ME        | AIDS           | LDVO          | Incident       | C404                     | 57B             | N/A                | N/A                | N/R                         |
| 7/15/2005  | US          | Eagle, CO            | MITRE          | LDVO          | Accident       | LJ35                     | EGE             | N/A                | N/A                | 331                         |
| 8/9/2005   | US          | Fort Lauderdale, FL  | AIDS           | LDVO          | Incident       | C402                     | FLL             | N/A                | N/A                | N/R                         |
| 8/10/2005  | US          | Spearfish, SD        | AIDS           | LDVO          | Incident       | BE20                     | SPF             | N/A                | N/A                | N/R                         |
| 9/11/2005  | US          | Las Vegas, NV        | AIDS           | LDVO          | Incident       | DHC6                     | VGT             | N/A                | N/A                | N/R                         |
| 9/12/2005  | Netherlands | Rotterdam            | Netherland TSB | LDVO          | Incident       | SW4                      | EHRD            | N/A                | N/A                | 38                          |
| 9/23/2005  | US          | Dallas, TX           | AIDS           | LDVO          | Incident       | C402                     | ADS             | N/A                | N/A                | N/R                         |

| 10/6/2005  | US        | Hayden, CO       | AIDS       | LDVO | Incident | C500 | HDN  | N/A | N/A | 5   |
|------------|-----------|------------------|------------|------|----------|------|------|-----|-----|-----|
| 11/17/2005 | US        | Jamestown, NY    | AIDS       | LDVO | Incident | H25A | JHW  | N/A | N/A | N/R |
| 12/1/2005  | US        | Sioux Falls, SD  | AIDS       | LDVO | Incident | SW4  | FSD  | N/A | N/A | N/R |
| 12/3/2005  | US        | Ann Arbor, MI    | AIDS       | LDVO | Incident | D328 | ARB  | N/A | N/A | 50  |
| 12/13/2005 | US        | Kotzebue, AK     | AIDS       | LDVO | Incident | DC6  | OTZ  | N/A | N/A | N/R |
| 12/26/2005 | Canada    | Winnipeg, MB     | Canada TSB | LDVO | Incident | A319 | CYWG | N/A | N/A | 15  |
| 12/27/2005 | US        | Marquette, MI    | AIDS       | LDVO | Incident | B190 | SAW  | N/A | N/A | N/R |
| 2/1/2006   | US        | Yakutat, AK      | AIDS       | LDVO | Incident | B731 | YAK  | N/A | N/A | N/R |
| 2/12/2006  | US        | New York, NY     | AIDS       | LDVO | Incident | A345 | JFK  | N/A | N/A | 100 |
| 2/25/2006  | England   | London           | AAIB       | LDVO | Incident | A344 | EGLL | N/A | N/A | 0   |
| 2/25/2006  | US        | Trenton, NJ      | AIDS       | LDVO | Incident | F900 | TTN  | N/A | N/A | N/R |
| 3/10/2006  | US        | Dallas, TX       | AIDS       | LDVO | Incident | L29B | DAL  | N/A | N/A | N/R |
| 3/13/2006  | US        | Houston, TX      | AIDS       | LDVO | Incident | B731 | IAH  | N/A | N/A | N/R |
| 3/20/2006  | US        | Minneapolis, MN  | AIDS       | LDVO | Incident | A30B | MSP  | N/A | N/A | N/R |
| 4/27/2006  | Australia | Mabuiag Island   | ATSB       | LDVO | Incident | C206 | YMAA | N/A | N/A | 170 |
| 5/2/2006   | US        | Chicago, IL      | AIDS       | LDVO | Incident | E145 | ORD  | N/A | N/A | N/R |
| 5/18/2006  | US        | Fairbanks, AK    | AIDS       | LDVO | Incident | MD80 | AFA  | N/A | N/A | N/R |
| 6/12/2006  | US        | Kaunakakai, HI   | AIDS       | LDVO | Incident | BE99 | MKK  | N/A | N/A | N/R |
| 7/28/2006  | US        | Memphis, TN      | NTSB       | LDVO | Accident | MD11 | MEM  | N/A | N/A | N/R |
| 8/6/2006   | US        | Salina, KS       | AIDS       | LDVO | Incident | H25A | SLN  | N/A | N/A | 150 |
| 8/13/2006  | England   | Middlesex        | AAIB       | LDVO | Accident | BE58 | EGLD | N/A | N/A | 164 |
| 9/16/2006  | US        | Modesto, CA      | AIDS       | LDVO | Incident | LJ35 | MOD  | N/A | N/A | N/R |
| 9/20/2006  | England   | Bedfordshire     | AAIB       | LDVO | Incident | C750 | EGGW | N/A | N/A | 12  |
| 10/27/2006 | US        | Louisville, KY   | AIDS       | LDVO | Incident | E135 | SDF  | N/A | N/A | N/R |
| 10/30/2006 | France    | Rouen            | BEA        | LDVO | Incident | AT43 | LFOP | N/A | N/A | 144 |
| 11/11/2006 | US        | Indianapolis, IN | AIDS       | LDVO | Incident | B721 | IND  | N/A | N/A | N/R |
| 12/14/2006 | US        | Sarasota, FL     | AIDS       | LDVO | Incident | WW24 | SRQ  | N/A | N/A | N/R |
| 1/8/2007   | US        | Denver, CO       | AIDS       | LDVO | Accident | BE30 | APA  | N/A | N/A | N/R |
| 1/12/2007  | US        | Denver, CO       | AIDS       | LDVO | Incident | SW4  | DEN  | N/A | N/A | N/R |
| 1/13/2007  | US        | Laramie, WY      | AIDS       | LDVO | Incident | SW3  | LAR  | N/A | N/A | N/R |
| 1/17/2007  | England   | Southampton      | AAIB       | LDVO | Incident | CRJ1 | EGHI | N/A | N/A | 52  |
| 2/4/2007   | US        | Miami, FL        | NTSB       | LDVO | Incident | DC87 | MIA  | N/A | N/A | N/R |

| Date       | Country | City/State          | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|---------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 2/14/2007  | US      | Teterboro, NJ       | AIDS   | LDVO          | Incident       | WW24                     | TEB             | N/A                | N/A                | 20                          |
| 2/17/2007  | US      | Indianapolis, IN    | AIDS   | LDVO          | Accident       | BE20                     | EYE             | N/A                | N/A                | 22                          |
| 2/20/2007  | US      | Cordova, AK         | NTSB   | LDVO          | Accident       | C402                     | CKU             | N/A                | N/A                | N/R                         |
| 2/24/2007  | US      | Dallas, TX          | NTSB   | LDVO          | Incident       | E145                     | DAL             | N/A                | N/A                | 115                         |
| 3/4/2007   | US      | Fayetteville, AR    | AIDS   | LDVO          | Incident       | BE20                     | FYV             | N/A                | N/A                | N/R                         |
| 4/4/2007   | US      | Knoxville, TN       | AIDS   | LDVO          | Incident       | C560                     | RKW             | N/A                | N/A                | N/R                         |
| 4/13/2007  | US      | Teterboro, NJ       | AIDS   | LDVO          | Incident       | D328                     | TEB             | N/A                | N/A                | 75                          |
| 4/16/2007  | US      | New Castle, DE      | AIDS   | LDVO          | Incident       | C680                     | ILG             | N/A                | N/A                | N/R                         |
| 4/23/2007  | US      | Baton Rouge, LA     | AIDS   | LDVO          | Incident       | AC68                     | BTR             | N/A                | N/A                | N/R                         |
| 7/30/2007  | US      | Madison, WI         | AIDS   | LDVO          | Incident       | E145                     | MSN             | N/A                | N/A                | N/R                         |
| 8/7/2007   | US      | Ankeny, IA          | AIDS   | LDVO          | Incident       | C650                     | IKV             | N/A                | N/A                | N/R                         |
| 8/23/2007  | US      | Westhampton, NY     | NTSB   | LDVO          | Accident       | LJ60                     | FOK             | N/A                | N/A                | N/R                         |
| 9/30/2007  | US      | Houston, TX         | AIDS   | LDVO          | Incident       | WW24                     | SGR             | N/A                | N/A                | 20                          |
| 10/9/2007  | US      | Chicago, IL         | NTSB   | LDVO          | Incident       | A320                     | ORD             | N/A                | N/A                | N/R                         |
| 11/17/2007 | US      | Vineyard Haven, MA  | AIDS   | LDVO          | Incident       | GALX                     | MVY             | N/A                | N/A                | N/R                         |
| 11/25/2007 | US      | Minneapolis, MN     | AIDS   | LDVO          | Incident       | GA7                      | FCM             | N/A                | N/A                | N/R                         |
| 1/15/2008  | France  | Paris               | BEA    | LDVO          | Incident       | A30B                     | CDG             | N/A                | N/A                | 39                          |
| 1/15/2008  | US      | Kenosha, WI         | AIDS   | LDVO          | Incident       | SH33                     | ENW             | N/A                | N/A                | N/R                         |
| 1/17/2008  | US      | Bigfork, MN         | AIDS   | LDVO          | Incident       | BE30                     | FOZ             | N/A                | N/A                | N/R                         |
| 1/19/2008  | US      | Dillingham, AK      | AIDS   | LDVO          | Incident       | B731                     | DLG             | N/A                | N/A                | N/R                         |
| 1/30/2008  | US      | West Palm Beach, FL | AIDS   | LDVO          | Incident       | GLF5                     | PBI             | N/A                | N/A                | N/R                         |
| 2/1/2008   | US      | Morristown, NJ      | AIDS   | LDVO          | Incident       | C560                     | MMU             | N/A                | N/A                | N/R                         |
| 2/3/2008   | US      | Jackson, WY         | AIDS   | LDVO          | Incident       | CL60                     | JAC             | N/A                | N/A                | N/R                         |
| 2/13/2008  | US      | Cedar City, UT      | AIDS   | LDVO          | Incident       | E120                     | CDC             | N/A                | N/A                | N/R                         |
| 3/1/2008   | US      | Saint Louis, MO     | AIDS   | LDVO          | Incident       | C560                     | SUS             | N/A                | N/A                | 6                           |
| 3/8/2008   | US      | Milwaukee, WI       | AIDS   | LDVO          | Incident       | DC91                     | MKE             | N/A                | N/A                | 10                          |
| 4/9/2008   | US      | Oklahoma City, OK   | AIDS   | LDVO          | Incident       | STAR                     | HSD             | N/A                | N/A                | 10                          |
| 4/12/2008  | US      | Potsdam, NY         | NTSB   | LDVO          | Accident       | E110                     | PTD             | N/A                | N/A                | N/R                         |
| 4/24/2008  | US      | Sterling, CO        | NTSB   | LDVO          | Accident       | C421                     | STK             | N/A                | N/A                | N/R                         |
| 5/23/2008  | US      | Fort Lauderdale, FL | AIDS   | LDVO          | Incident       | SBR1                     | FXE             | N/A                | N/A                | N/R                         |
| 5/24/2008  | US      | Fort Lauderdale, FL | AIDS   | LDVO          | Incident       | C402                     | FLL             | N/A                | N/A                | N/R                         |
| 6/13/2008  | US      | Atlanta, GA         | AIDS   | LDVO          | Incident       | C560                     | PDK             | N/A                | N/A                | N/R                         |

| 7/3/2008   | US | Destin, FL       | AIDS  | LDVO | Incident | C525 | DTS     | N/A  | N/A  | N/R |
|------------|----|------------------|-------|------|----------|------|---------|------|------|-----|
| 7/15/2008  | US | Portland, OR     | AIDS  | LDVO | Incident | C402 | TTD     | N/A  | N/A  | N/R |
| 9/7/2008   | US | San Antonio, TX  | AIDS  | LDVO | Incident | CL60 | SAT     | N/A  | N/A  | N/R |
| 9/19/2008  | US | Van Nuys, CA     | AIDS  | LDVO | Incident | EGRT | VNY     | N/A  | N/A  | N/R |
| 9/22/2008  | US | Chicago, IL      | NTSB  | LDVO | Incident | B752 | ORD     | N/A  | N/A  | 35  |
| 10/3/2008  | US | Lewiston, ID     | AIDS  | LDVO | Incident | SW4  | LWS     | N/A  | N/A  | N/R |
| 11/27/2008 | US | Ironwood, MI     | AIDS  | LDVO | Incident | B190 | IWD     | N/A  | N/A  | N/R |
| 1/12/2009  | US | Chicago, IL      | AIDS  | LDVO | Incident | LJ55 | ARR     | N/A  | N/A  | 20  |
| 1/13/2009  | US | Kodiak, AK       | AIDS  | LDVO | Incident | B731 | ADQ     | N/A  | N/A  | N/R |
| 4/27/2009  | US | Nantucket, MA    | AIDS  | LDVO | Incident | C402 | ACK     | N/A  | N/A  | N/R |
| 1/27/1978  | US | Nashville, TN    | AIDS  | TOOR | Incident | B721 | BNA     | 150  | 0    | N/A |
| 2/13/1980  | US | Chicago, IL      | AIDS  | TOOR | Incident | C500 | Unknown | N/R  | N/R  | N/A |
| 2/19/1981  | US | Pittsburg, PA    | AIDS  | TOOR | Incident | DC91 | PTS     | N/R  | N/R  | N/A |
| 3/4/1981   | US | Hagerstown, MD   | AIDS  | TOOR | Incident | C500 | HGR     | N/R  | N/R  | N/A |
| 2/3/1982   | US | Philadelphia, PA | NTSB  | TOOR | Accident | DC10 | PHL     | 600  | 0    | N/A |
| 4/16/1982  | US | Tucson, AZ       | AIDS  | TOOR | Incident | DC85 | TUS     | N/R  | N/R  | N/A |
| 6/4/1982   | US | Wichita, KS      | NTSB  | TOOR | Accident | BE65 | AAO     | 300  | 50   | N/A |
| 7/5/1982   | US | Boise, ID        | MITRE | TOOR | Incident | DC91 | BOI     | 50   | 0    | N/A |
| 7/9/1982   | US | New Orleans, LA  | NTSB  | TOOR | Accident | B721 | MSY     | 2376 | 564  | N/A |
| 9/13/1982  | US | Denver, CO       | NTSB  | TOOR | Incident | SW3  | DEN     | 10   | 0    | N/A |
| 10/3/1982  | US | New Orleans, LA  | MITRE | TOOR | Incident | B721 | MSY     | 443  | 0    | N/A |
| 1/11/1983  | US | Detroit, MI      | NTSB  | TOOR | Accident | DC85 | DTW     | 299  | 1200 | N/A |
| 7/2/1983   | US | King Salmon, AK  | AIDS  | TOOR | Incident | DC7  | AKN     | N/R  | N/R  | N/A |
| 11/23/1983 | US | Perris, CA       | AIDS  | TOOR | Incident | DHC6 | L65     | N/R  | N/R  | N/A |
| 12/3/1983  | US | Olney, TX        | AIDS  | TOOR | Incident | FA10 | SPS     | N/R  | N/R  | N/A |
| 12/23/1983 | US | Anchorage, AK    | NTSB  | TOOR | Accident | DC10 | ANC     | 1434 | 40   | N/A |
| 5/31/1984  | US | Denver, CO       | NTSB  | TOOR | Accident | B721 | DEN     | 1074 | 0    | N/A |
| 7/28/1984  | US | Waterville, ME   | NTSB  | TOOR | Accident | LJ25 | WVL     | 100  | 10   | N/A |
| 1/17/1985  | US | Flushing, NY     | MITRE | TOOR | Incident | B721 | LGA     | N/R  | N/R  | N/A |
| 1/21/1985  | US | Johnstown, PA    | NTSB  | TOOR | Accident | LJ25 | JST     | N/R  | N/R  | N/A |
| 4/3/1985   | US | Grand Rapids, MI | NTSB  | TOOR | Accident | DHC6 | GRR     | N/R  | N/R  | N/A |

| Date       | Country        | City/State      | Source     | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|----------------|-----------------|------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 6/27/1985  | Puerto<br>Rico | San Juan        | NTSB       | TOOR          | Accident       | DC10                     | SJU             | 63                 | 161                | N/A                         |
| 6/27/1985  | US             | San Juan, PR    | NTSB       | TOOR          | Accident       | DC10                     | SJU             | 140                | 0                  | N/A                         |
| 8/13/1985  | US             | Madison, WI     | NTSB       | TOOR          | Accident       | LJ23                     | MSN             | 900                | 0                  | N/A                         |
| 7/20/1986  | Canada         | Wabush, NL      | Canada TSB | TOOR          | Accident       | B731                     | YWK             | 200                | 0                  | N/A                         |
| 8/6/1986   | US             | Rutland, VT     | NTSB       | TOOR          | Accident       | LJ55                     | RUT             | N/R                | N/R                | N/A                         |
| 5/12/1987  | US             | Pittsburgh, PA  | NTSB       | TOOR          | Accident       | LJ35                     | AGC             | 1320               | 300                | N/A                         |
| 5/26/1987  | US             | New Orleans, LA | NTSB       | TOOR          | Accident       | JS31                     | MSY             | 1180               | 20                 | N/A                         |
| 7/16/1987  | US             | Jackson, MS     | NTSB       | TOOR          | Accident       | JCOM                     | JAN             | N/R                | N/R                | N/A                         |
| 8/3/1987   | US             | Denver, CO      | NTSB       | TOOR          | Incident       | A30B                     | DEN             | N/R                | N/R                | N/A                         |
| 9/21/1987  | US             | Tyndall AFB, FL | NTSB       | TOOR          | Incident       | LJ35                     | PAM             | 230                | -50                | N/A                         |
| 9/24/1987  | US             | Twin Falls, ID  | NTSB       | TOOR          | Accident       | SW4                      | TWF             | 245                | 1144               | N/A                         |
| 10/5/1987  | US             | Oakland, CA     | AIDS       | TOOR          | Incident       | LJ25                     | OAK             | 50                 | 0                  | N/A                         |
| 11/15/1987 | US             | Denver, CO      | NTSB       | TOOR          | Accident       | DC91                     | Stapleton       | 1300               | 325                | N/A                         |
| 12/19/1987 | US             | Bethel, AK      | MITRE      | TOOR          | Accident       | C208                     | BET             | N/R                | N/R                | N/A                         |
| 5/21/1988  | US             | Dallas, TX      | NTSB       | TOOR          | Accident       | DC10                     | DFW             | 1112               | 0                  | N/A                         |
| 6/27/1988  | UK             | Newcastle       | UK AAIB    | TOOR          | Incident       | BA11                     | NCL             | 161                | 0                  | N/A                         |
| 8/16/1988  | US             | Cleveland, OH   | NTSB       | TOOR          | Accident       | SW3                      | CLE             | 837                | 387                | N/A                         |
| 8/19/1988  | US             | Cleveland, OH   | ASRS       | TOOR          | Incident       |                          | CLE             | 500                | 300                | N/A                         |
| 8/31/1988  | US             | Dallas, TX      | NTSB       | TOOR          | Accident       | B721                     | DFW             | 2833               | 0                  | N/A                         |
| 9/11/1988  | US             | New Orleans, LA | AIDS       | TOOR          | Incident       | L29A                     | MSY             | 400                | 0                  | N/A                         |
| 11/15/1988 | US             | Minneapolis, MN | NTSB       | TOOR          | Incident       | DC91                     | MSP             | 330                | 0                  | N/A                         |
| 8/19/1989  | US             | New Orleans, LA | ASRS       | TOOR          | Incident       |                          | MSY             | 800                | 0                  | N/A                         |
| 8/25/1989  | US             | New Orleans, LA | MITRE      | TOOR          | Incident       | B721                     | MSY             | 600                | 0                  | N/A                         |
| 9/13/1989  | US             | Warsaw, IN      | AIDS       | TOOR          | Incident       | WW24                     | ASW             | 1000               | 0                  | N/A                         |
| 9/20/1989  | US             | Flushing, NY    | NTSB       | TOOR          | Accident       | B731                     | LGA             | 194                | 0                  | N/A                         |
| 1/6/1990   | US             | Miami, FL       | NTSB       | TOOR          | Accident       | L29A                     | MIA             | 1180               | 100                | N/A                         |
| 1/30/1990  | US             | Rochester, NY   | MITRE      | TOOR          | Incident       | DC91                     | ROC             | 250                | 0                  | N/A                         |
| 3/13/1990  | US             | Teterboro, NJ   | MITRE      | TOOR          | Incident       | LJ35                     | TEB             | 250                | 0                  | N/A                         |
| 3/12/1991  | US             | New York, NY    | NTSB       | TOOR          | Accident       | DC85                     | JFK             | 835                | 550                | N/A                         |
| 7/22/1991  | US             | Detroit, MI     | NTSB       | TOOR          | Accident       | LJ23                     | DET             | 828                | 0                  | N/A                         |
| 7/31/1991  | US             | Denver, CO      | AIDS       | TOOR          | Incident       | B721                     | DEN             | 150                | 0                  | N/A                         |

| 10/11/1991 | US      | Dallas, TX        | MITRE      | TOOR | Incident | JS31 | DFW  | N/R  | N/R  | N/A |
|------------|---------|-------------------|------------|------|----------|------|------|------|------|-----|
| 1/31/1992  | US      | Bellingham, WA    | MITRE      | TOOR | Incident | B461 | BLI  | N/R  | N/R  | N/A |
| 4/15/1992  | US      | Charlotte, NC     | NTSB       | TOOR | Incident | F28  | CLT  | 100  | 0    | N/A |
| 4/19/1992  | US      | Charlotte, NC     | ASRS       | TOOR | Incident |      | CLT  | 200  | -130 | N/A |
| 7/30/1992  | US      | New York, NY      | NTSB       | TOOR | Accident | L101 | JFK  | N/R  | N/R  | N/A |
| 8/19/1992  | US      | Washington, DC    | MITRE      | TOOR | Incident | SW4  | DCA  | 170  | 0    | N/A |
| 12/18/1992 | US      | Mccall, ID        | NTSB       | TOOR | Accident | FA10 | MYL  | 500  | 50   | N/A |
| 4/19/1993  | US      | Merced, CA        | NTSB       | TOOR | Accident | JS31 | MCE  | 200  | 250  | N/A |
| 9/19/1993  | France  | Troyes            | France BEA | TOOR | Incident | SW4  | QYR  | 885  | 98   | N/A |
| 9/29/1993  | France  | Besançon          | France BEA | TOOR | Accident | FA10 | QBQ  | 99   | 49   | N/A |
| 11/2/1993  | US      | Houston, TX       | AIDS       | TOOR | Incident | CL60 | HOU  | 200  | 0    | N/A |
| 3/2/1994   | US      | Flushing, NY      | NTSB       | TOOR | Accident |      | LGA  | 500  | 0    | N/A |
| 4/6/1994   | US      | Jackson, WY       | AIDS       | TOOR | Incident | C421 | JAC  | N/R  | N/R  | N/A |
| 5/19/1994  | US      | Texarkana, TX     | ASRS       | TOOR | Incident | SF34 | TXK  | 80   | 0    | N/A |
| 7/13/1994  | US      | Atlantic City, NJ | NTSB       | TOOR | Accident | LJ35 | ACY  | 446  | 0    | N/A |
| 8/26/1994  | US      | New Orleans, LA   | NTSB       | TOOR | Accident | FA20 | NEW  | 500  | 0    | N/A |
| 5/23/1995  | US      | Rogers, AR        | NTSB       | TOOR | Accident | LJ35 | ROG  | 1200 | 0    | N/A |
| 6/25/1995  | US      | Atlanta, GA       | MITRE      | TOOR | Incident | LJ35 | ATL  | N/R  | N/R  | N/A |
| 9/18/1995  | US      | Ames, IA          | AIDS       | TOOR | Incident | C402 | AMW  | N/R  | N/R  | N/A |
| 9/21/1995  | US      | Houston, TX       | AIDS       | TOOR | Incident | LJ25 | HOU  | 225  | 0    | N/A |
| 10/19/1995 | Canada  | Vancouver, BC     | TSB        | TOOR | Incident | DC10 | YVR  | 400  | 141  | N/A |
| 5/1/1996   | US      | Albuquerque, NM   | NTSB       | TOOR | Accident | SBR1 | ABQ  | 212  | 212  | N/A |
| 7/8/1996   | US      | Nashville, TN     | NTSB       | TOOR | Accident | B731 | BNA  | 750  | -100 | N/A |
| 8/1/1996   | UK      | Cambridge         | UK AAIB    | TOOR | Incident |      | EGSC | N/R  | N/R  | N/A |
| 8/14/1996  | US      | Pottstown, PA     | NTSB       | TOOR | Accident | PA31 | N47  | 1429 | 457  | N/A |
| 8/16/1996  | England | Liverpool         | AAIB       | TOOR | Incident | A748 | LPL  | 718  | 200  | N/A |
| 1/10/1997  | US      | Bangor, ME        | NTSB       | TOOR | Accident | B190 | BGR  | N/R  | N/R  | N/A |
| 1/19/1997  | Italy   | Rome              | ASRS       | TOOR | Incident | DC10 | FCO  | N/R  | N/R  | N/A |
| 6/13/1997  | US      | San Antonio, TX   | AIDS       | TOOR | Incident | C421 | SAT  | N/R  | N/R  | N/A |
| 8/7/1997   | US      | Miami, FL         | NTSB       | TOOR | Accident | DC85 | MIA  | 575  | 0    | N/A |
| 11/29/1997 | Canada  | Island Lake, MB   | Canada TSB | TOOR | Accident | B190 | YIV  | 200  | 0    | N/A |

| Date       | Country     | City/State          | Source         | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-------------|---------------------|----------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 2/20/1998  | England     | Norwich             | UK AAIB        | TOOR          | Incident       | JPRO                     | NWI             | N/R                | N/R                | N/A                         |
| 3/19/1998  | US          | Portland, OR        | NTSB           | TOOR          | Accident       | S601                     | PDX             | N/R                | N/R                | N/A                         |
| 3/30/1998  | UK          | Stansted            | UK AAIB        | TOOR          | Incident       | A748                     | STN             | 386                | 0                  | N/A                         |
| 5/12/1998  | US          | Monroe, MI          | NTSB           | TOOR          | Accident       | FA20                     | TTF             | N/R                | N/R                | N/A                         |
| 6/23/1998  | US          | Washington, DC      | AIDS           | TOOR          | Incident       | LJ60                     | IAD             | 250                | 0                  | N/A                         |
| 6/23/1998  | US          | Washington, DC      | AIDS           | TOOR          | Incident       | LJ60                     | IAD             | N/R                | N/R                | N/A                         |
| 7/19/1998  | US          | Raleigh, NC         | ASRS           | TOOR          | Incident       | B721                     | RDU             | 200                | 0                  | N/A                         |
| 8/28/1998  | US          | El Paso, TX         | MITRE          | TOOR          | Accident       | FA20                     | ELP             | 2010               | 0                  | N/A                         |
| 12/3/1998  | Canada      | Iqaluit, NU         | Canada TSB     | TOOR          | Accident       | A748                     | YFB             | 800                | -100               | N/A                         |
| 11/11/1999 | US          | Chicago, IL         | NTSB           | TOOR          | Accident       | BE20                     | CGX             | 300                | 100                | N/A                         |
| 5/11/2000  | Canada      | Edmonton, AB        | Canada TSB     | TOOR          | Incident       | DC91                     | YEG             | 500                | 0                  | N/A                         |
| 8/17/2000  | US          | Ottawa, IL          | AIDS           | TOOR          | Incident       | SC7                      | 8N2             | N/R                | N/R                | N/A                         |
| 10/15/2000 | US          | Anchorage, AK       | NTSB           | TOOR          | Incident       | B741                     | ANC             | 690                | 0                  | N/A                         |
| 10/19/2000 | US          | Concord, CA         | NTSB           | TOOR          | Accident       | BE30                     | CCR             | 496                | 0                  | N/A                         |
| 1/4/2001   | US          | Schenectady, NY     | NTSB           | TOOR          | Accident       | LJ35                     | SCH             | 470                | 0                  | N/A                         |
| 2/1/2001   | US          | San Luis Obispo, CA | MITRE          | TOOR          | Incident       | WW24                     | SBP             | 35                 | 0                  | N/A                         |
| 3/17/2001  | US          | Detroit, MI         | NTSB           | TOOR          | Accident       | A320                     | DTW             | 530                | 73                 | N/A                         |
| 3/22/2001  | France      | Orleans             | France BEA     | TOOR          | Accident       | PA31                     | LFOZ            | 590                | -66                | N/A                         |
| 8/16/2001  | US          | Traverse City, MI   | MITRE          | TOOR          | Incident       | LJ25                     | TVC             | 630                | 0                  | N/A                         |
| 8/24/2001  | US          | Ithaca, NY          | NTSB           | TOOR          | Accident       | LJ25                     | ITH             | 1000               | 10                 | N/A                         |
| 11/18/2001 | US          | Delavan, WI         | AIDS           | TOOR          | Incident       | DHC6                     | C59             | N/R                | N/R                | N/A                         |
| 4/1/2002   | US          | Cambridge, MD       | ASRS           | TOOR          | Incident       | BE40                     | CGE             | 75                 | 0                  | N/A                         |
| 5/20/2002  | US          | Oklahoma City, OK   | NTSB           | TOOR          | Accident       | C550                     | PWA             | 700                | 0                  | N/A                         |
| 10/3/2002  | US          | Everett, WA         | AIDS           | TOOR          | Incident       | C500                     | PAE             | N/R                | N/R                | N/A                         |
| 6/12/2003  | US          | Fort Lauderdale, FL | AIDS           | TOOR          | Incident       | LJ24                     | FXE             | 1000               | 0                  | N/A                         |
| 7/17/2003  | Netherlands | Eelde               | Netherland TSB | TOOR          | Accident       | MD88                     | EHGG            | 100                | 0                  | N/A                         |
| 7/22/2003  | US          | Pittston, PA        | MITRE          | TOOR          | Accident       | HUNT                     | AVP             | 740                | 0                  | N/A                         |
| 8/7/2003   | US          | Duluth, MN          | MITRE          | TOOR          | Incident       | WW24                     | DLH             | 6                  | 0                  | N/A                         |
| 8/17/2003  | US          | Groton, CT          | AIDS           | TOOR          | Incident       | LJ25                     | GON             | 125                | 0                  | N/A                         |
| 11/11/2003 | US          | Chicago, IL         | NTSB           | TOOR          | Accident       | C560                     | PWK             | 500                | 0                  | N/A                         |
| 12/16/2003 | US          | Teterboro, NJ       | NTSB           | TOOR          | Incident       | CL60                     | TEB             | 188                | 0                  | N/A                         |
| 10/14/2004 | Canada      | Halifax, NS         | Canada TSB     | TOOR          | Accident       | B741                     | YHZ             | 1750               | 40                 | N/A                         |

| 12/20/2004 | US          | El Paso, TX      | ASRS  | TOOR | Incident | LJ25 | ELP     | 200  | 0   | N/A |
|------------|-------------|------------------|-------|------|----------|------|---------|------|-----|-----|
| 2/2/2005   | US          | Teterboro, NJ    | MITRE | TOOR | Accident | CL60 | TEB     | 545  | 0   | N/A |
| 3/9/2005   | US          | Tupelo, MS       | NTSB  | TOOR | Accident | CL60 | TUP     | 120  | 30  | N/A |
| 5/9/2005   | US          | Brownwood, TX    | NTSB  | TOOR | Accident | SBR1 | BWD     | 1300 | 0   | N/A |
| 7/25/2005  | Australia   | Nhill            | ATSB  | TOOR | Incident | PA31 | YNHL    | 162  | 0   | N/A |
| 8/1/2006   | US          | Angola, IN       | AIDS  | TOOR | Incident | C560 | ANQ     | 75   | 0   | N/A |
| 8/27/2006  | US          | Lexington, KY    | NTSB  | TOOR | Accident | CRJ1 | LEX     | 975  | 0   | N/A |
| 1/25/2007  | France      | Pau              | ASN   | TOOR | Accident | F100 | PUF     | 1598 | 100 | N/A |
| 4/30/1970  | Italy       | Rome             | ATSB  | TOVO | Incident | B701 | LIRF    | N/A  | N/A | 370 |
| 3/1/1978   | US          | Lawrence, KS     | AIDS  | TOVO | Incident | AC80 | LWC     | N/A  | N/A | N/R |
| 2/21/1979  | US          | Detroit, MI      | AIDS  | TOVO | Incident | DC85 | DET     | N/A  | N/A | N/R |
| 11/18/1980 | US          | Rochester, NY    | AIDS  | TOVO | Incident | FA10 | ROC     | N/A  | N/A | N/R |
| 6/23/1981  | US          | Philadelphia, PA | AIDS  | TOVO | Incident | H25A | PHL     | N/A  | N/A | 500 |
| 12/9/1981  | US          | San Diego, CA    | AIDS  | TOVO | Incident | C500 | Unknown | N/A  | N/A | N/R |
| 12/16/1981 | US          | Des Moines, IA   | AIDS  | TOVO | Incident | WW24 | DSM     | N/A  | N/A | N/R |
| 2/3/1982   | US          | Detroit, MI      | AIDS  | TOVO | Incident | SW3  | Unknown | N/A  | N/A | N/R |
| 3/30/1982  | US          | Chicago, IL      | NTSB  | TOVO | Incident | SW4  | ORD     | N/A  | N/A | 70  |
| 7/14/1982  | US          | Santa Fe, NM     | AIDS  | TOVO | Incident | SW4  | SAF     | N/A  | N/A | N/R |
| 7/11/1983  | US          | Morristown, NJ   | AIDS  | TOVO | Incident | SBR1 | MMU     | N/A  | N/A | N/R |
| 1/11/1984  | US          | Old Town, ME     | AIDS  | TOVO | Incident | BE20 | OLD     | N/A  | N/A | N/R |
| 1/12/1984  | US          | Plymouth, MA     | AIDS  | TOVO | Incident | SW3  | РҮМ     | N/A  | N/A | N/R |
| 1/23/1984  | US          | Chicago, IL      | NTSB  | TOVO | Incident | DC86 | ORD     | N/A  | N/A | N/R |
| 10/25/1984 | US          | Houston, TX      | AIDS  | TOVO | Incident | LJ35 | SGR     | N/A  | N/A | N/R |
| 12/19/1984 | US          | Detroit, MI      | NTSB  | TOVO | Accident | BE18 | YIP     | N/A  | N/A | N/R |
| 2/5/1986   | US          | Philadelphia, PA | AIDS  | TOVO | Incident | CL60 | PHL     | N/A  | N/A | N/R |
| 2/7/1986   | US          | Brigham City, UT | AIDS  | TOVO | Incident | WW24 | BMC     | N/A  | N/A | N/R |
| 3/22/1986  | US          | Melbourne, FL    | AIDS  | TOVO | Incident | GLF2 | MLB     | N/A  | N/A | N/R |
| 11/29/1986 | Puerto Rico | San Juan         | NTSB  | TOVO | Incident | DHC6 | Unknown | N/A  | N/A | N/R |
| 1/22/1987  | US          | Washington, DC   | AIDS  | TOVO | Incident | C650 | IAD     | N/A  | N/A | N/R |
| 2/26/1987  | US          | Denver, CO       | NTSB  | TOVO | Accident | LJ35 | APA     | N/A  | N/A | 80  |
| 3/24/1987  | US          | Dallas, TX       | NTSB  | TOVO | Accident | CVLT | DFW     | N/A  | N/A | 95  |

| Date       | Country | City/State           | Source | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|---------|----------------------|--------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 2/8/1988   | US      | Springfield, IL      | AIDS   | TOVO          | Incident       | SW3                      | SPI             | N/A                | N/A                | N/R                         |
| 2/24/1988  | US      | Morganton, NC        | NTSB   | TOVO          | Accident       | BE18                     | MRN             | N/A                | N/A                | 62                          |
| 9/3/1988   | US      | South Saint Paul, MN | AIDS   | TOVO          | Incident       | AC90                     | SGS             | N/A                | N/A                | N/R                         |
| 10/22/1988 | US      | Houston, TX          | AIDS   | TOVO          | Incident       | LJ24                     | HOU             | N/A                | N/A                | N/R                         |
| 10/29/1988 | US      | Aspen, CO            | NTSB   | TOVO          | Accident       | CL60                     | ASE             | N/A                | N/A                | 300                         |
| 1/6/1989   | US      | Washington, DC       | AIDS   | TOVO          | Incident       | FA10                     | IAD             | N/A                | N/A                | N/R                         |
| 6/20/1989  | US      | Frankfort, KY        | AIDS   | TOVO          | Incident       | SW3                      | FFT             | N/A                | N/A                | N/R                         |
| 7/11/1989  | US      | Rochester, NY        | AIDS   | TOVO          | Incident       | F27                      | ROC             | N/A                | N/A                | N/R                         |
| 8/16/1989  | US      | Dallas, TX           | AIDS   | TOVO          | Incident       | AC90                     | DAL             | N/A                | N/A                | N/R                         |
| 4/6/1990   | US      | Orlando, FL          | AIDS   | TOVO          | Incident       | WW24                     | MCO             | N/A                | N/A                | N/R                         |
| 8/17/1990  | US      | Nantucket, MA        | AIDS   | TOVO          | Incident       | SW4                      | ACK             | N/A                | N/A                | N/R                         |
| 1/7/1991   | US      | Kansas City, MO      | NTSB   | TOVO          | Incident       | B733                     | MCI             | N/A                | N/A                | 40                          |
| 4/15/1991  | US      | Houston, TX          | AIDS   | TOVO          | Incident       | H25A                     | HOU             | N/A                | N/A                | N/R                         |
| 4/26/1991  | US      | Teterboro, NJ        | AIDS   | TOVO          | Incident       | SW4                      | TEB             | N/A                | N/A                | N/R                         |
| 7/19/1991  | US      | Albuquerque, NM      | NTSB   | TOVO          | Accident       | DC3                      | ABQ             | N/A                | N/A                | 50                          |
| 10/31/1991 | US      | Wichita, KS          | AIDS   | TOVO          | Incident       | LJ31                     | ICT             | N/A                | N/A                | N/R                         |
| 1/10/1992  | US      | Baton Rouge, LA      | AIDS   | TOVO          | Incident       | AC90                     | BTR             | N/A                | N/A                | N/R                         |
| 1/28/1994  | US      | Washington, DC       | MITRE  | TOVO          | Incident       | DC91                     | IAD             | N/A                | N/A                | 700                         |
| 1/31/1994  | US      | Anderson, IN         | NTSB   | TOVO          | Accident       | DC3                      | AID             | N/A                | N/A                | 50                          |
| 3/31/1994  | US      | Orlando, FL          | AIDS   | TOVO          | Incident       | SW4                      | ORL             | N/A                | N/A                | N/R                         |
| 9/14/1994  | US      | Rochester, NY        | AIDS   | TOVO          | Incident       | SW2                      | ROC             | N/A                | N/A                | N/R                         |
| 9/20/1994  | US      | Portsmouth, NH       | AIDS   | TOVO          | Incident       | GLF2                     | PSM             | N/A                | N/A                | N/R                         |
| 11/29/1994 | US      | Spokane, WA          | AIDS   | TOVO          | Incident       | B731                     | GEG             | N/A                | N/A                | N/R                         |
| 9/1/1995   | US      | Denver, CO           | AIDS   | TOVO          | Incident       | SW3                      | APA             | N/A                | N/A                | N/R                         |
| 12/17/1995 | US      | Philadelphia, PA     | AIDS   | TOVO          | Incident       | LJ55                     | PHL             | N/A                | N/A                | 55                          |
| 12/20/1995 | US      | New York, NY         | NTSB   | TOVO          | Accident       | B741                     | JFK             | N/A                | N/A                | N/R                         |
| 1/10/1996  | US      | Hyannis, MA          | AIDS   | TOVO          | Incident       | C560                     | HYA             | N/A                | N/A                | N/R                         |
| 1/25/1996  | US      | Louisville, KY       | AIDS   | TOVO          | Incident       | LJ35                     | SDF             | N/A                | N/A                | N/R                         |
| 1/27/1996  | US      | Pendleton, OR        | AIDS   | TOVO          | Incident       | SW4                      | PDT             | N/A                | N/A                | N/R                         |
| 4/7/1996   | US      | Saint Corix, VI      | NTSB   | TOVO          | Accident       | DHC6                     | STX             | N/A                | N/A                | 145                         |
| 5/30/1996  | US      | Newark, NJ           | AIDS   | TOVO          | Incident       | CL60                     | EWR             | N/A                | N/A                | N/R                         |
| 6/6/1996   | US      | San Luis Obispo, CA  | MITRE  | TOVO          | Accident       | JS31                     | SBP             | N/A                | N/A                | 5                           |

| 9/17/1996  | US      | Miami, FL             | AIDS  | TOVO | Incident | BE18 | MIA  | N/A | N/A | N/R |
|------------|---------|-----------------------|-------|------|----------|------|------|-----|-----|-----|
| 10/30/1996 | US      | Chicago, IL           | MITRE | TOVO | Accident | GLF4 | PWK  | N/A | N/A | 25  |
| 12/10/1996 | US      | Chicago, IL           | AIDS  | TOVO | Incident | AC56 | PWK  | N/A | N/A | N/R |
| 12/30/1996 | US      | Orlando, FL           | MITRE | TOVO | Incident | DC85 | МСО  | N/A | N/A | 75  |
| 1/10/1997  | US      | Bangor, ME            | NTSB  | TOVO | Accident | B190 | BGR  | N/A | N/A | 10  |
| 1/19/1997  | US      | Aspen, CO             | AIDS  | TOVO | Incident | LJ35 | ASE  | N/A | N/A | N/R |
| 1/25/1997  | US      | Hayden, CO            | AIDS  | TOVO | Incident | B731 | HDN  | N/A | N/A | N/R |
| 2/22/1997  | US      | Austin, TX            | AIDS  | TOVO | Incident | BE30 | AUS  | N/A | N/A | N/R |
| 3/6/1997   | US      | Providence, RI        | AIDS  | TOVO | Incident | C650 | PVD  | N/A | N/A | 50  |
| 3/14/1997  | US      | Concord, NH           | AIDS  | TOVO | Incident | SW3  | РОН  | N/A | N/A | N/R |
| 5/1/1997   | US      | Ontario, CA           | AIDS  | TOVO | Incident | SW4  | KONT | N/A | N/A | N/R |
| 10/24/1997 | US      | Portland, ME          | AIDS  | TOVO | Incident | LJ24 | PWM  | N/A | N/A | N/R |
| 10/28/1997 | England | East Midlands         | AAIB  | TOVO | Incident | SF34 | EGNX | N/A | N/A | 90  |
| 1/10/1998  | US      | San Francisco, CA     | AIDS  | TOVO | Incident | A320 | SFO  | N/A | N/A | N/R |
| 1/30/1998  | US      | Missoula, MT          | AIDS  | TOVO | Incident | SW4  | MSO  | N/A | N/A | N/R |
| 3/2/1998   | US      | Johnstown, PA         | AIDS  | TOVO | Incident | JS31 | JST  | N/A | N/A | N/R |
| 3/10/1998  | US      | Detroit, MI           | AIDS  | TOVO | Incident | C212 | YIP  | N/A | N/A | N/R |
| 5/1/1998   | US      | Fort Lauderdale, FL   | AIDS  | TOVO | Incident | SW4  | FLL  | N/A | N/A | N/R |
| 6/30/1998  | England | Stansted Mountfitchet | AAIB  | TOVO | Incident | JS31 | EGSS | N/A | N/A | 417 |
| 11/23/1998 | US      | Long Beach, CA        | AIDS  | TOVO | Incident | BE18 | LGB  | N/A | N/A | N/R |
| 12/19/1998 | US      | Colorado Springs, CO  | AIDS  | TOVO | Incident | B731 | COS  | N/A | N/A | 20  |
| 1/8/1999   | US      | Lewistown, MT         | AIDS  | TOVO | Incident | SW4  | LWT  | N/A | N/A | N/R |
| 8/8/1999   | US      | Chicago, IL           | AIDS  | TOVO | Incident | B731 | MDW  | N/A | N/A | N/R |
| 9/24/1999  | US      | Chicago, IL           | AIDS  | TOVO | Incident | C402 | MDW  | N/A | N/A | N/R |
| 10/1/1999  | US      | Louisville, KY        | AIDS  | TOVO | Incident | FA10 | SDF  | N/A | N/A | N/R |
| 11/19/1999 | France  | Paris                 | BEA   | TOVO | Accident | B731 | CDG  | N/A | N/A | 35  |
| 2/3/2000   | US      | Peru, IN              | AIDS  | TOVO | Accident | BE20 | I76  | N/A | N/A | N/R |
| 3/16/2000  | US      | Fort Lauderdale, FL   | NTSB  | TOVO | Accident | C402 | FLL  | N/A | N/A | 330 |
| 5/21/2000  | US      | Nantucket, MA         | AIDS  | TOVO | Incident | C402 | ACK  | N/A | N/A | N/R |
| 7/31/2000  | US      | Las Vegas, NV         | AIDS  | TOVO | Incident | B731 | LAS  | N/A | N/A | N/R |
| 12/28/2000 | US      | Erie, PA              | AIDS  | TOVO | Incident | LJ25 | ERI  | N/A | N/A | 15  |
| 3/10/2001  | US      | Bar Harbor, ME        | AIDS  | TOVO | Incident | B190 | BHB  | N/A | N/A | N/R |

| Date       | Country     | City/State          | Source         | Event<br>Type | Event<br>Class | Aircraft<br>ICAO<br>Code | Airport<br>Code | Location X<br>(ft) | Location Y<br>(ft) | Maximum<br>Veer-off<br>(ft) |
|------------|-------------|---------------------|----------------|---------------|----------------|--------------------------|-----------------|--------------------|--------------------|-----------------------------|
| 4/7/2001   | US          | Anchorage, AK       | AIDS           | TOVO          | Incident       | B190                     | ANC             | N/A                | N/A                | N/R                         |
| 8/28/2001  | US          | Chicago, IL         | MITRE          | TOVO          | Accident       | SW3                      | DPA             | N/A                | N/A                | 340                         |
| 3/9/2002   | US          | Chicago, IL         | AIDS           | TOVO          | Incident       | F2TH                     | MDW             | N/A                | N/A                | 175                         |
| 7/20/2002  | US          | Ardmore, OK         | AIDS           | TOVO          | Incident       | GLF2                     | ADM             | N/A                | N/A                | 55                          |
| 9/21/2002  | US          | Chicago, IL         | AIDS           | TOVO          | Incident       | C560                     | MDW             | N/A                | N/A                | N/R                         |
| 9/29/2002  | US          | Hawthorne, CA       | NTSB           | TOVO          | Accident       | SW4                      | HHR             | N/A                | N/A                | N/R                         |
| 12/8/2002  | US          | New Orleans, LA     | AIDS           | TOVO          | Incident       | WW24                     | NEW             | N/A                | N/A                | 25                          |
| 12/13/2002 | US          | Manassas, VA        | MITRE          | TOVO          | Accident       |                          | HEF             | N/A                | N/A                | 250                         |
| 2/17/2003  | US          | Richmond, VA        | AIDS           | TOVO          | Incident       | SW4                      | RIC             | N/A                | N/A                | N/R                         |
| 3/16/2003  | US          | Cedar City, UT      | NTSB           | TOVO          | Incident       | E120                     | CDC             | N/A                | N/A                | 35                          |
| 4/2/2003   | Netherlands | Amsterdam           | Netherland TSB | TOVO          | Incident       | B741                     | EHAM            | N/A                | N/A                | 60                          |
| 5/28/2003  | US          | Bismarck, ND        | AIDS           | TOVO          | Incident       | SW4                      | BIS             | N/A                | N/A                | N/R                         |
| 8/18/2003  | US          | St Augustine, FL    | MITRE          | TOVO          | Accident       | BE40                     | SGJ             | N/A                | N/A                | 45                          |
| 6/4/2004   | US          | Fairbanks, AK       | AIDS           | TOVO          | Incident       | LJ35                     | AFA             | N/A                | N/A                | N/R                         |
| 6/17/2004  | US          | Lancaster, PA       | AIDS           | TOVO          | Incident       | LJ35                     | LNS             | N/A                | N/A                | N/R                         |
| 7/29/2005  | US          | Mount Pleasant, SC  | AIDS           | TOVO          | Incident       | BE20                     | LRO             | N/A                | N/A                | N/R                         |
| 11/8/2005  | US          | Eureka, CA          | AIDS           | TOVO          | Incident       | PA31                     | EKA             | N/A                | N/A                | N/R                         |
| 1/20/2006  | England     | Glasgow             | AAIB           | TOVO          | Incident       | AT43                     | EGPK            | N/A                | N/A                | 17                          |
| 1/21/2006  | US          | Caldwell, ID        | AIDS           | TOVO          | Incident       | AC68                     | EUL             | N/A                | N/A                | N/R                         |
| 1/29/2006  | US          | Las Vegas, NV       | AIDS           | TOVO          | Incident       | A319                     | LAS             | N/A                | N/A                | N/R                         |
| 1/30/2006  | US          | Las Vegas, NV       | Canada TSB     | TOVO          | Incident       | A319                     | LAS             | N/A                | N/A                | 40                          |
| 2/20/2006  | US          | Casper, WY          | NTSB           | TOVO          | Incident       | SW4                      | CPR             | N/A                | N/A                | 25                          |
| 6/6/2006   | US          | Fort Lauderdale, FL | AIDS           | TOVO          | Incident       | SW3                      | FXE             | N/A                | N/A                | N/R                         |
| 7/27/2006  | US          | Louisville, KY      | AIDS           | TOVO          | Incident       | B721                     | SDF             | N/A                | N/A                | N/R                         |
| 8/12/2006  | US          | Amarillo, TX        | AIDS           | TOVO          | Incident       | LJ31                     | AMA             | N/A                | N/A                | 50                          |
| 5/22/2007  | England     | Exeter              | AAIB           | TOVO          | Accident       | HUNT                     | EGTE            | N/A                | N/A                | N/R                         |
| 7/14/2007  | Australia   | Sydney              | ATSB           | TOVO          | Incident       | B731                     | YSSY            | N/A                | N/A                | 165                         |
| 11/11/2007 | US          | Kansas City, MO     | AIDS           | TOVO          | Incident       | LJ60                     | МКС             | N/A                | N/A                | N/R                         |
| 1/19/2008  | US          | New York, NY        | AIDS           | TOVO          | Incident       | B741                     | JFK             | N/A                | N/A                | N/R                         |
| 2/14/2008  | US          | Greensboro, NC      | AIDS           | TOVO          | Incident       | DC85                     | GSO             | N/A                | N/A                | 25                          |
| 5/26/2008  | US          | Everett, WA         | AIDS           | TOVO          | Incident       | SW3                      | PAE             | N/A                | N/A                | N/R                         |
| 8/20/2008  | US          | Chicago, IL         | AIDS           | TOVO          | Accident       | C525                     | PWK             | N/A                | N/A                | N/R                         |
| 12/20/2008 | US          | Denver, CO          | NTSB           | TOVO          | Accident       | B731                     | DEN             | N/A                | N/A                | 525                         |

## APPENDIX C

# Sample of Normal Operations Data

**PRECIP FINAL2** NEQPT\_CLASS PRECIP FINAL CEILING100FT NEQPT\_TYPE USER\_CLASS DUMMAAAA **Frozen Precip** XWIND Knts **CEILING Ft** ETMSARR Wx Stratum Elec. Storm FLT\_TYPE DawnDusk TEMP10C TERRAIN LOCID HOUR VIS Sm Light2 TEMP Icing Light HUB Snow  $\operatorname{Fog}$ ADS NHASWF 10.00 0.57 1.1 ADS NHASWF 10.00 0.57 1.1 NHASWF 10.00 0.48 0.9 ADS 10.00 NHASWF 0.9 ADS 0.48 NHASWF 10.00 0.48 0.9 ADS ADS NHASWF 10.00 0.24 1.2 ADS NHASWF 10.00 0.53 0.7 0.53 0.7 ADS NHASWF 10.00 ADS NHASWF 10.00 0.53 0.7 ADS NHASWF 4.000 0.24 10.8 0.9 ADS NHASWF 4.000 0.24 10.8 0.9 NHASWF 4.000 0.38 10.8 0.9 ADS NHASWF 5.000 0.38 ADS 12.8 0.9 ADS NHASWF 5.000 0.38 12.8 0.9 NHASWF 10.00 2.3 ADS ADS NHASWF 10.00 2.3 ADS NHASWF 10.00 1.5 ADS NHASWF 10.00 1.5 NHASWF ADS 10.00 1.6 ADS NHASWF 10.00 1.6 NHASWF 10.00 15.7 1.4 ADS ADS NHASWF 10.00 15.7 1.4 

Table C1. Example of normal operations data.

#### Table C2. Codes used for NOD.

| LOCIDAirport IATA/FAA codeYYYYMMDDDateHOURLocal TimeFLT_TYPEForeign Origin/destination = 1; Domestic = 0Significant terrain (code 1) if the terrain within the plan view exceeds 4,000<br>feet above the airport elevation, or if the terrain within a 6.0 nautical mile<br>radius of the Airport Reference Point rises to at least 2,000 feet above the<br>airport elevation.HUB1 Hub; 2 Non-hubUSER_CLASS1 Commercial; 2 Air Taxi; 3 Freight; 4 GAETMSARRArrival countsETMSDEPDeparture counts1 A/B (255000lbs+lB757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)NEQPT_TYPE1 Turboprop; 2 JetWx StratumFor stratified sampling purposesCEILING FtCeiling in feetVIS SmVisibility capped Max 10SMTEMPDegree CFogYes = 1; No = 0IcingYes = 1; No = 0Elec. StormYes = 1; No = 0Frozen PrecipYes = 1; No = 0PRECIP FINAL0 None; 1 Trace/Light; 2 Moderate; 3 HeavyLight1 Day; 2 Night; 3 Dawn; 4 DuskAPP XIND KntsIn knotsDEP XWIND KntsIn knotsPRECIP FINAL20 Day; 1 Night/Dawn/DuskPRECIP FINAL20 None; 1 Trace/Light/Moderate/HeavyCEILING100FTCeiling capped Max 3000ft | Field          | Notes                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YYYYMMDD       Date         HOUR       Local Time         FLT_TYPE       Foreign Origin/destination = 1; Domestic = 0         Significant terrain (code 1) if the terrain within the plan view exceeds 4,000<br>feet above the airport elevation, or if the terrain within a 6.0 nautical mile<br>radius of the Airport Reference Point rises to at least 2,000 feet above the<br>airport elevation.         HUB       1 Hub; 2 Non-hub         USER_CLASS       1 Commercial; 2 Air Taxi; 3 Freight; 4 GA         ETMSARR       Arrival counts         TMSDEP       Departure counts         1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 F         NEQPT_CLASS       (<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                         | LOCID          |                                                                                                                                                             |
| FLT_TYPE       Foreign Origin/destination = 1; Domestic = 0         Significant terrain (code 1) if the terrain within the plan view exceeds 4,000 feet above the airport elevation, or if the terrain within a 6.0 nautical mile radius of the Airport Reference Point rises to at least 2,000 feet above the airport elevation.         HUB       1 Hub; 2 Non-hub         USER_CLASS       1 Commercial; 2 Air Taxi; 3 Freight; 4 GA         ETMSARR       Arrival counts         ETMSDEP       Departure counts         1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3 D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 F         NEQPT_CLASS       (<12500lbss/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3 D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 F                                                                                                                                                                                                                                                                                                                                                 | YYYYMMDD       |                                                                                                                                                             |
| Significant terrain (code 1) if the terrain within the plan view exceeds 4,000 feet above the airport elevation, or if the terrain within a 6.0 nautical mile radius of the Airport Reference Point rises to at least 2,000 feet above the airport elevation.         HUB       1 Hub; 2 Non-hub         USER_CLASS       1 Commercial; 2 Air Taxi; 3 Freight; 4 GA         ETMSARR       Arrival counts         ETMSDEP       Departure counts         1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3 D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 F (         NEQPT_CLASS       (<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOUR           | Local Time                                                                                                                                                  |
| feet above the airport elevation, or if the terrain within a 6.0 nautical mile<br>radius of the Airport Reference Point rises to at least 2,000 feet above the<br>airport elevation.HUB1 Hub; 2 Non-hubUSER_CLASS1 Commercial; 2 Air Taxi; 3 Freight; 4 GAETMSARRArrival countsETMSDEPDeparture counts1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FLT TYPE       | Foreign Origin/destination = 1; Domestic = 0                                                                                                                |
| USER_CLASS1 Commercial; 2 Air Taxi; 3 Freight; 4 GAETMSARRArrival countsETMSDEPDeparture counts1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERRAIN        | feet above the airport elevation, or if the terrain within a 6.0 nautical mile radius of the Airport Reference Point rises to at least 2,000 feet above the |
| ETMSARRArrival countsETMSDEPDeparture counts1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HUB            | 1 Hub; 2 Non-hub                                                                                                                                            |
| ETMSDEPDeparture counts1 A/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USER_CLASS     | 1 Commercial; 2 Air Taxi; 3 Freight; 4 GA                                                                                                                   |
| 1 Å/B (255000lbs+/B757 Heavy); 2 C(41000-255000lbs Large Jet); 3<br>D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETMSARR        | Arrival counts                                                                                                                                              |
| D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 FNEQPT_CLASS(<12500lbs Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETMSDEP        | Departure counts                                                                                                                                            |
| Wx StratumFor stratified sampling purposesCEILING FtCeiling in feetVIS SmVisibility capped Max 10SMTEMPDegree CFogYes = 1; No = 0IcingYes = 1; No = 0Elec. StormYes = 1; No = 0Frozen PrecipYes = 1; No = 0SnowYes = 1; No = 0PRECIP FINAL0 None; 1 Trace/Light; 2 Moderate; 3 HeavyLight1 Day; 2 Night; 3 Dawn; 4 DuskAPP XIND KntsIn knotsDEP XWIND KntsIn knotsLight20 Day; 1 Night/Dawn/DuskPRECIP FINAL20 None; 1 Trace/Light/Moderate/HeavyCEILING100FTCeiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NEQPT_CLASS    | D(41000-255000lbs Large commuter); 4 E (12500-41000lbs Medium); 5 F                                                                                         |
| CEILING FtCeiling in feetVIS SmVisibility capped Max 10SMTEMPDegree CFogYes = 1; No = 0IcingYes = 1; No = 0Elec. StormYes = 1; No = 0Frozen PrecipYes = 1; No = 0SnowYes = 1; No = 0PRECIP FINAL0 None; 1 Trace/Light; 2 Moderate; 3 HeavyLight1 Day; 2 Night; 3 Dawn; 4 DuskAPP XIND KntsIn knotsDEP XWIND KntsIn knotsLight20 Day; 1 Night/Dawn/DuskPRECIP FINAL20 None; 1 Trace/Light/Moderate/HeavyCEILING100FTCeiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NEQPT_TYPE     | 1 Turboprop; 2 Jet                                                                                                                                          |
| VIS SmVisibility capped Max 10SMTEMPDegree CFogYes = 1; No = 0IcingYes = 1; No = 0Elec. StormYes = 1; No = 0Frozen PrecipYes = 1; No = 0SnowYes = 1; No = 0PRECIP FINAL0 None; 1 Trace/Light; 2 Moderate; 3 HeavyLight1 Day; 2 Night; 3 Dawn; 4 DuskAPP XIND KntsIn knotsDEP XWIND KntsIn knotsLight20 Day; 1 Night/Dawn/DuskPRECIP FINAL20 None; 1 Trace/Light/Moderate/HeavyCEILING100FTCeiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wx Stratum     | For stratified sampling purposes                                                                                                                            |
| TEMP         Degree C           Fog         Yes = 1; No = 0           lcing         Yes = 1; No = 0           Elec. Storm         Yes = 1; No = 0           Frozen Precip         Yes = 1; No = 0           Snow         Yes = 1; No = 0           PRECIP FINAL         0 None; 1 Trace/Light; 2 Moderate; 3 Heavy           Light         1 Day; 2 Night; 3 Dawn; 4 Dusk           APP XIND Knts         In knots           DEP XWIND Knts         In knots           Light2         0 Day; 1 Night/Dawn/Dusk           PRECIP FINAL2         0 None; 1 Trace/Light/Moderate/Heavy           CEILING100FT         Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CEILING Ft     | Ceiling in feet                                                                                                                                             |
| Fog         Yes = 1; No = 0           lcing         Yes = 1; No = 0           Elec. Storm         Yes = 1; No = 0           Frozen Precip         Yes = 1; No = 0           Snow         Yes = 1; No = 0           PRECIP FINAL         0 None; 1 Trace/Light; 2 Moderate; 3 Heavy           Light         1 Day; 2 Night; 3 Dawn; 4 Dusk           APP XIND Knts         In knots           DEP XWIND Knts         In knots           Light2         0 Day; 1 Night/Dawn/Dusk           PRECIP FINAL2         0 None; 1 Trace/Light/Moderate/Heavy           CEILING100FT         Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VIS Sm         | Visibility capped Max 10SM                                                                                                                                  |
| Icing         Yes = 1; No = 0           Elec. Storm         Yes = 1; No = 0           Frozen Precip         Yes = 1; No = 0           Snow         Yes = 1; No = 0           PRECIP FINAL         0 None; 1 Trace/Light; 2 Moderate; 3 Heavy           Light         1 Day; 2 Night; 3 Dawn; 4 Dusk           APP XIND Knts         In knots           DEP XWIND Knts         In knots           Light2         0 Day; 1 Night/Dawn/Dusk           PRECIP FINAL2         0 None; 1 Trace/Light/Moderate/Heavy           CEILING100FT         Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEMP           | Degree C                                                                                                                                                    |
| Elec. Storm         Yes = 1; No = 0           Frozen Precip         Yes = 1; No = 0           Snow         Yes = 1; No = 0           PRECIP FINAL         0 None; 1 Trace/Light; 2 Moderate; 3 Heavy           Light         1 Day; 2 Night; 3 Dawn; 4 Dusk           APP XIND Knts         In knots           DEP XWIND Knts         In knots           Light2         0 Day; 1 Night/Dawn/Dusk           PRECIP FINAL2         0 None; 1 Trace/Light/Moderate/Heavy           CEILING100FT         Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fog            | Yes = 1; No = 0                                                                                                                                             |
| Frozen Precip       Yes = 1; No = 0         Snow       Yes = 1; No = 0         PRECIP FINAL       0 None; 1 Trace/Light; 2 Moderate; 3 Heavy         Light       1 Day; 2 Night; 3 Dawn; 4 Dusk         APP XIND Knts       In knots         DEP XWIND Knts       In knots         Light2       0 Day; 1 Night/Dawn/Dusk         PRECIP FINAL2       0 None; 1 Trace/Light/Moderate/Heavy         CEILING100FT       Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lcing          | Yes = 1; No = 0                                                                                                                                             |
| Snow       Yes = 1; No = 0         PRECIP FINAL       0 None; 1 Trace/Light; 2 Moderate; 3 Heavy         Light       1 Day; 2 Night; 3 Dawn; 4 Dusk         APP XIND Knts       In knots         DEP XWIND Knts       In knots         Light2       0 Day; 1 Night/Dawn/Dusk         PRECIP FINAL2       0 None; 1 Trace/Light/Moderate/Heavy         CEILING100FT       Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elec. Storm    | Yes = 1; No = 0                                                                                                                                             |
| PRECIP FINAL       0 None; 1 Trace/Light; 2 Moderate; 3 Heavy         Light       1 Day; 2 Night; 3 Dawn; 4 Dusk         APP XIND Knts       In knots         DEP XWIND Knts       In knots         Light2       0 Day; 1 Night/Dawn/Dusk         PRECIP FINAL2       0 None; 1 Trace/Light/Moderate/Heavy         CEILING100FT       Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frozen Precip  | Yes = 1; No = 0                                                                                                                                             |
| Light       1 Day; 2 Night; 3 Dawn; 4 Dusk         APP XIND Knts       In knots         DEP XWIND Knts       In knots         Light2       0 Day; 1 Night/Dawn/Dusk         PRECIP FINAL2       0 None; 1 Trace/Light/Moderate/Heavy         CEILING100FT       Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Snow           | Yes = 1; No = 0                                                                                                                                             |
| APP XIND Knts       In knots         DEP XWIND Knts       In knots         Light2       0 Day; 1 Night/Dawn/Dusk         PRECIP FINAL2       0 None; 1 Trace/Light/Moderate/Heavy         CEILING100FT       Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRECIP FINAL   | 0 None; 1 Trace/Light; 2 Moderate; 3 Heavy                                                                                                                  |
| DEP XWIND Knts     In knots       Light2     0 Day; 1 Night/Dawn/Dusk       PRECIP FINAL2     0 None; 1 Trace/Light/Moderate/Heavy       CEILING100FT     Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Light          | 1 Day; 2 Night; 3 Dawn; 4 Dusk                                                                                                                              |
| Light20 Day; 1 Night/Dawn/DuskPRECIP FINAL20 None; 1 Trace/Light/Moderate/HeavyCEILING100FTCeiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APP XIND Knts  | In knots                                                                                                                                                    |
| PRECIP FINAL2         0 None; 1 Trace/Light/Moderate/Heavy           CEILING100FT         Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEP XWIND Knts | In knots                                                                                                                                                    |
| CEILING100FT Ceiling capped Max 3000ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Light2         | 0 Day; 1 Night/Dawn/Dusk                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRECIP FINAL2  | 0 None; 1 Trace/Light/Moderate/Heavy                                                                                                                        |
| DawnDusk 0 Dav/Night: 1 Dawn/Dusk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CEILING100FT   | Ceiling capped Max 3000ft                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DawnDusk       | 0 Day/Night; 1 Dawn/Dusk                                                                                                                                    |

### APPENDIX D

## Aircraft Database Summary

| Aircraft Name         | Manufacturer | ICAO<br>Code | Wingspan<br>(ft) | Length<br>(ft) | Height (ft) | Engine<br>Type | Engines<br>(#) | MTOW<br>(lb) | Takeoff<br>Distance<br>(ft) | Landing<br>Distance<br>(ft) | V2<br>(kts) | Approach<br>Speed<br>(kts) |
|-----------------------|--------------|--------------|------------------|----------------|-------------|----------------|----------------|--------------|-----------------------------|-----------------------------|-------------|----------------------------|
| Mohawk 298            | Aerospatiale | N262         | 71.9             | 63.3           | 20.3        | Turboprop      | 2              | 23,369       | 2,296.6                     | 1,312.3                     | 100         | 110                        |
| Aerostar 600          | Aerostar     | AEST         | 36.7             | 34.8           | 12.8        | Piston         | 2              | 6,305        | 1,804.5                     | 1,148.3                     | 95          | 94                         |
| A-300                 | Airbus       | A30B         | 147.1            | 177.5          | 54.3        | Jet            | 2              | 378,534      | 7,349.1                     | 5,026.2                     | 160         | 135                        |
| A-300-600             | Airbus       | A306         | 147.1            | 177.5          | 54.3        | Jet            | 2              | 378,534      | 7,349.1                     | 5,026.2                     | 160         | 135                        |
| A-310-200/300         | Airbus       | A310         | 144.0            | 153.1          | 51.8        | Jet            | 2              | 330,693      | 7,513.1                     | 4,888.5                     | 160         | 135                        |
| A-318                 | Airbus       | A318         | 111.9            | 103.2          | 41.2        | Jet            | 2              | 130,073      | 4,593.2                     | 4,265.1                     | 135         | 138                        |
| A-319                 | Airbus       | A319         | 111.9            | 111.2          | 38.6        | Jet            | 2              | 141,096      | 5,741.5                     | 4,429.1                     | 135         | 138                        |
| A-320                 | Airbus       | A320         | 111.9            | 123.3          | 38.6        | Jet            | 2              | 162,040      | 7,185.0                     | 4,724.4                     | 145         | 138                        |
| A-321                 | Airbus       | A321         | 111.9            | 146.0          | 38.6        | Jet            | 2              | 182,984      | 7,250.7                     | 5,249.3                     | 145         | 138                        |
| A-330-200             | Airbus       | A332         | 197.8            | 192.9          | 57.1        | Jet            | 2              | 507,063      | 7,545.9                     | 5,905.5                     | 145         | 140                        |
| A-330-300             | Airbus       | A333         | 197.8            | 208.7          | 55.3        | Jet            | 2              | 507,063      | 7,545.9                     | 5,905.5                     | 145         | 130                        |
| A-340-200             | Airbus       | A342         | 197.8            | 194.8          | 54.8        | Jet            | 4              | 606,271      | 9,071.5                     | 5,790.7                     | 145         | 150                        |
| A-340-300             | Airbus       | A343         | 197.8            | 208.7          | 55.3        | Jet            | 4              | 606,271      | 9,071.5                     | 6,003.9                     | 145         | 150                        |
| A-340-500             | Airbus       | A345         | 208.2            | 222.8          | 56.1        | Jet            | 4              | 811,301      | 10,498.7                    | 6,299.2                     | 145         | 150                        |
| A-340-600             | Airbus       | A346         | 208.2            | 247.0          | 56.8        | Jet            | 4              | 811,301      | 10,301.8                    | 6,561.7                     | 145         | 150                        |
| A-380-800             | Airbus       | A388         | 261.8            | 239.5          | 79.1        | Jet            | 4              | 1,234,589    | 9,744.1                     | 6,594.5                     | 150         | 145                        |
| Alenia ATR-42-200/300 | ATR          | AT43         | 80.7             | 74.5           | 24.9        | Turboprop      | 2              | 36,817       | 3,608.9                     | 3,280.8                     | 110         | 104                        |
| Alenia ATR-72-200/210 | ATR          | AT72         | 88.9             | 89.2           | 25.3        | Turboprop      | 2              | 47,399       | 4,921.3                     | 3,608.9                     | 110         | 105                        |
| Avro 748              | Avro         | A748         | 98.2             | 66.9           | 24.9        | Turboprop      | 2              | 46,495       | 3,280.8                     | 2,034.1                     | 110         | 100                        |
| Jetsream 31           | Bae Systems  | JS31         | 52.0             | 47.1           | 17.5        | Turboprop      | 2              | 15,562       | 5,905.5                     | 4,265.1                     | 110         | 125                        |
| Jetsream 32           | Bae Systems  | JS32         | 52.0             | 47.1           | 17.7        | Turboprop      | 2              | 16,226       | 5,150.9                     | 4,002.6                     | 110         | 125                        |
| Jetsream 41           | Bae Systems  | JS41         | 60.4             | 63.4           | 18.4        | Turboprop      | 2              | 24,000       | 4,921.3                     | 4,265.1                     | 110         | 120                        |
| 100 King Air          | Beech        | BE10         | 45.9             | 40.0           | 15.4        | Turboprop      | 2              | 11,795       | 1,476.4                     | 2,132.5                     | 105         | 111                        |
| 33 Debonair           | Beech        | BE33         | 33.5             | 25.6           | 8.2         | Piston         | 1              | 3,064        | 1,148.3                     | 984.3                       | 75          | 70                         |
| Beech 55 Baron        | Beech        | BE55         | 37.7             | 27.9           | 9.5         | Piston         | 2              | 5,071        | 1,476.4                     | 1,476.4                     | 95          | 90                         |
| Beech 60 Duke         | Beech        | BE60         | 39.4             | 33.8           | 12.5        | Piston         | 2              | 6,768        | 1,968.5                     | 1,312.3                     | 95          | 98                         |
| Beech 76 Duchess      | Beech        | BE76         | 38.1             | 29.2           | 9.5         | Piston         | 2              | 3,902        | 2,132.5                     | 1,968.5                     | 85          | 76                         |
| Beech 99 Airliner     | Beech        | BE99         | 45.9             | 44.6           | 14.4        | Turboprop      | 2              | 16,755       | 3,280.8                     | 2,952.8                     | 115         | 107                        |

| Bonanza V35B            | Beech      | BE35   | 33.4  | 26.3  | 7.6  | Piston    | 1 | 3,400   | 1150     | 1480    |     | 70  |
|-------------------------|------------|--------|-------|-------|------|-----------|---|---------|----------|---------|-----|-----|
| King Air F90            | Beech      | BE9T   | 45.9  | 39.8  |      | Turboprop | 2 | 10,950  |          |         |     | 108 |
| Super King Air 300      | Beech      | BE30   | 54.5  | 44.0  | 14.8 | Turboprop | 2 | 13,889  | 1,870.1  | 1,771.7 | 115 | 103 |
| Premier 1A              | Beechcraft | PRM1   | 44.5  | 46.0  | 15.3 | Jet       | 2 | 12,500  | 3,792.0  | 3,170.0 |     | 121 |
| B707-100                | Boeing     | B701   | 130.9 | 144.7 | 42.3 | Jet       | 4 | 190,003 | 8,694.2  | 6,496.1 |     | 139 |
| B717-200                | Boeing     | B712   | 93.2  | 124.0 | 29.5 | Jet       | 2 | 120,999 | 6,889.8  | 5,249.3 | 130 | 139 |
| B727 Stage 3 Noise Acft | Boeing     | B727Q  | 107.9 | 153.2 | 34.1 | Jet       | 3 | 210,101 | 9,842.5  | 4,921.3 | 145 | 150 |
| B727-100                | Boeing     | B721   | 108.0 | 133.2 | 34.3 | Jet       | 3 | 169,095 | 8,202.1  | 4,921.3 |     | 125 |
| B727-200                | Boeing     | B722   | 107.9 | 153.2 | 34.1 | Jet       | 3 | 210,101 | 9,842.5  | 4,921.3 | 145 | 150 |
| B737 Stage 3 Noise Acft | Boeing     | B737Q  | 93.0  | 94.0  | 37.2 | Jet       | 2 | 110,121 | 5,905.5  | 4,593.2 | 145 | 137 |
| B737-100                | Boeing     | B731   | 93.0  | 94.0  | 37.2 | Jet       | 2 | 110,121 | 5,905.5  | 4,593.2 | 145 | 137 |
| B737-200                | Boeing     | B732   | 93.0  | 100.2 | 37.2 | Jet       | 2 | 115,500 | 6,003.9  | 4,593.2 | 145 | 137 |
| B737-300                | Boeing     | B733   | 94.8  | 109.6 | 36.6 | Jet       | 2 | 124,495 | 5,249.3  | 4,593.2 | 140 | 135 |
| B737-400                | Boeing     | B734   | 94.8  | 119.4 | 36.6 | Jet       | 2 | 138,494 | 6,561.7  | 4,921.3 | 150 | 139 |
| B737-500                | Boeing     | B735   | 94.8  | 101.7 | 36.6 | Jet       | 2 | 115,500 | 4,921.3  | 4,593.2 | 139 | 140 |
| B737-600                | Boeing     | B736   | 112.6 | 102.5 | 40.8 | Jet       | 2 | 123,988 | 6,233.6  | 4,265.1 | 135 | 125 |
| B737-700                | Boeing     | B737   | 112.6 | 110.3 | 40.8 | Jet       | 2 | 146,211 | 5,905.5  | 4,593.2 | 140 | 130 |
| B737-800                | Boeing     | B738   | 112.6 | 129.5 | 40.6 | Jet       | 2 | 155,492 | 7,545.9  | 5,249.3 | 145 | 141 |
| B737-900                | Boeing     | B739   | 112.6 | 138.2 | 40.6 | Jet       | 2 | 174,198 | 7,545.9  | 5,577.4 | 149 | 144 |
| B747-100                | Boeing     | B741   | 195.3 | 229.0 | 64.2 | Jet       | 4 | 735,021 | 10,465.9 | 6,233.6 | 170 | 152 |
| B747-200                | Boeing     | B742   | 195.7 | 229.0 | 64.2 | Jet       | 4 | 826,403 | 10,498.7 | 6,233.6 | 173 | 152 |
| B747-300                | Boeing     | B743   | 195.7 | 229.0 | 64.2 | Jet       | 4 | 826,403 | 10,826.8 | 7,217.8 | 178 | 160 |
| B747-400                | Boeing     | B744   | 195.6 | 229.2 | 64.2 | Jet       | 4 | 874,993 | 10,826.8 | 6,988.2 | 185 | 154 |
| B747-400ER              | Boeing     | B744ER | 213.0 | 231.9 | 64.3 | Jet       | 4 | 910,002 | 10,498.7 | 7,841.2 |     | 157 |
| B747-8                  | Boeing     | B748   | 224.4 | 246.9 | 64.3 | Jet       | 4 | 975,001 | 10,000.0 | 8,595.8 |     | 159 |
| B757-200                | Boeing     | B752   | 124.8 | 155.2 | 45.1 | Jet       | 2 | 255,031 | 6,233.6  | 4,593.2 | 145 | 135 |
| B757-300                | Boeing     | B753   | 124.8 | 177.4 | 44.8 | Jet       | 2 | 272,491 | 8,530.2  | 5,905.5 | 145 | 142 |
| B767-200                | Boeing     | B762   | 156.1 | 159.2 | 52.9 | Jet       | 2 | 395,002 | 8,858.3  | 4,921.3 | 160 | 130 |
| B767-300                | Boeing     | B763   | 156.1 | 180.2 | 52.6 | Jet       | 2 | 412,000 | 9,514.4  | 5,905.5 | 160 | 130 |
| B767-400                | Boeing     | B764   | 170.3 | 201.3 | 55.8 | Jet       | 2 | 449,999 | 9,514.4  | 5,905.5 | 160 | 150 |
| B767-400ER              | Boeing     | B764ER | 170.3 | 201.3 | 55.8 | Jet       | 2 | 449,999 | 9,514.4  | 5,905.5 | 160 | 150 |
| B777-200                | Boeing     | B772   | 199.9 | 209.1 | 61.5 | Jet       | 2 | 545,005 | 9,514.4  | 5,577.4 | 170 | 145 |

| Aircraft Name           | Manufacturer         | ICAO<br>Code | Wingspan<br>(ft) | Length<br>(ft) | Height (ft) | Engine<br>Type | Engines<br>(#) | MTOW<br>(lb) | Takeoff<br>Distance<br>(ft) | Landing<br>Distance<br>(ft) | V2<br>(kts) | Approach<br>Speed<br>(kts) |
|-------------------------|----------------------|--------------|------------------|----------------|-------------|----------------|----------------|--------------|-----------------------------|-----------------------------|-------------|----------------------------|
| B777-200LR              | Boeing               | B772LR       | 212.6            | 209.1          | 61.5        | Jet            | 2              | 766,001      | 9,514.4                     | 5,577.4                     | 170         | 139                        |
| B777-300                | Boeing               | B773         | 199.9            | 242.3          | 61.5        | Jet            | 2              | 659,998      | 9,842.5                     | 5,905.5                     | 168         | 145                        |
| B777-300ER              | Boeing               | B773ER       | 212.6            | 242.3          | 61.8        | Jet            | 2              | 775,002      | 9,514.4                     | 5,905.5                     | 160         | 145                        |
| B787-8 Dreamliner       | Boeing               | B788         | 197.2            | 186.1          | 55.5        | Jet            | 2              | 484,001      |                             |                             |             | 140                        |
| BMD-90                  | Boeing               | MD90         | 107.8            | 152.6          | 31.2        | Jet            | 2              | 164,244      | 7,217.8                     | 3,937.0                     | 140         | 140                        |
| BD-700 Global Express   | Bombardier           | GLEX         | 93.8             | 99.4           | 24.9        | Jet            | 2              | 98,106       | 6,135.2                     | 1,358.3                     | 120         | 126                        |
| BAC 1-11                | British<br>Aerospace | BA11         | 93.5             | 107.0          | 25.4        | Jet            | 2              | 99,651       | 7,470.5                     | 4,757.2                     | 140         | 129                        |
| BAE-146-200             | British<br>Aerospace | B462         | 86.4             | 93.7           | 28.2        | Jet            | 4              | 93,035       | 3,379.3                     | 4,051.8                     | 125         | 125                        |
| CL-600 Challenger       | Canadair             | CL60         | 61.8             | 68.4           |             | Jet            | 2              | 47,600       |                             |                             |             | 125                        |
| RJ-100 Regional Jet     | Canadair             | CRJ1         | 69.6             | 87.9           | 20.7        | Jet            | 2              | 47,399       | 5,249.3                     | 4,593.2                     | 135         | 135                        |
| RJ-200 Regional Jet     | Canadair             | CRJ2         | 69.6             | 87.9           | 20.7        | Jet            | 2              | 47,399       | 5,249.3                     | 4,593.2                     | 135         | 135                        |
| RJ-700 Regional Jet     | Canadair             | CRJ7         | 76.2             | 106.7          | 24.8        | Jet            | 2              | 72,753       | 5,249.3                     | 4,849.1                     | 135         | 135                        |
| RJ-900 Regional Jet     | Canadair             | CRJ9         | 76.4             | 118.8          | 24.6        | Jet            | 2              | 80,491       | 6,168.0                     | 5,118.1                     | 170         | 150                        |
| Aviocar                 | Casa                 | C212         | 66.6             | 53.1           | 21.7        | Turboprop      | 2              | 16,976       | 2,952.8                     | 1,640.4                     | 100         | 81                         |
| 500 Citation            | Cessna               | C500         | 47.2             | 43.6           | 14.4        | Jet            | 2              | 10,847       | 3,274.3                     | 1,870.1                     | 120         | 125                        |
| Cessna 120              | Cessna               | C120         | 32.8             | 21.0           |             | Piston         | 1              | 1,450        | 650.0                       | 460.0                       |             |                            |
| Cessna 150 Commuter     | Cessna               | C150         | 33.5             | 21.7           | 6.9         | Piston         | 1              | 1,499        | 820.2                       | 656.2                       | 55          | 55                         |
| Cessna 172 Skyhawk      | Cessna               | C172         | 35.8             | 26.9           | 8.9         | Piston         | 1              | 2,315        | 984.3                       | 524.9                       | 60          | 65                         |
| Cessna 182 Skylane      | Cessna               | C182         | 36.1             | 28.2           | 9.2         | Piston         | 1              | 2,800        | 656.2                       | 1,348.4                     | 65          | 92                         |
| Cessna 185 Skywagon     | Cessna               | C185         | 36.2             | 25.8           | 7.8         | Piston         | 1              | 3,351        | 650.0                       | 610.0                       |             |                            |
| Cessna 206 Caravan 1    | Cessna               | C208         | 52.2             | 37.7           | 14.1        | Turboprop      | 1              | 8,001        | 1,640.4                     | 1,476.4                     | 85          | 104                        |
| Cessna 210 Centurion    | Cessna               | C210         | 36.7             | 28.2           | 9.8         | Piston         | 1              | 4,012        | 1,312.3                     | 1,476.4                     | 70          | 75                         |
| Cessna 340 Rocket       | Cessna               | C340         | 38.1             | 34.4           | 12.5        | Piston         | 2              | 5,975        | 2,132.5                     | 1,640.4                     | 95          | 110                        |
| Cessna 402 Utililiner   | Cessna               | C402         | 44.2             | 36.4           | 11.8        | Piston         | 2              | 6,305        | 2,221.1                     | 1,765.1                     | 95          | 95                         |
| Cessna 404 Titan        | Cessna               | C404         | 49.5             | 39.0           | 13.1        | Piston         | 2              | 8,444        | 2,296.6                     | 1,968.5                     | 100         | 100                        |
| Cessna 414 Chancellor   | Cessna               | C414         | 41.0             | 33.8           | 11.8        | Piston         | 2              | 6,746        | 1,706.0                     | 2,296.6                     | 100         | 94                         |
| Cessna 421 Golden Eagle | Cessna               | C421         | 40.0             | 33.8           | 11.8        | Piston         | 2              | 6,834        | 1,968.5                     | 2,460.6                     | 100         | 96                         |
| Cessna 425 Corsair      | Cessna               | C425         | 44.3             | 35.8           | 12.8        | Turboprop      | 2              | 8,598        | 2,460.6                     | 2,132.5                     | 105         | 110                        |
| Cessna 441 Conquest     | Cessna               | C441         | 49.3             | 39.0           | 13.1        | Turboprop      | 2              | 9,855        | 1,804.5                     | 1,148.3                     | 105         | 100                        |
| Cessna 500 Citation 1   | Cessna               | C500         | 47.2             | 43.6           | 14.4        | Jet            | 2              | 10,847       | 3,274.3                     | 1,870.1                     | 120         | 108                        |
| Cessna 501 Citation 1SP | Cessna               | C501         | 47.2             | 43.6           | 14.4        | Jet            | 2              | 10,847       | 3,274.3                     | 1,870.1                     | 120         | 125                        |

| Cessna 525 Citation CJ1        | Cessna                 | C525 | 46.9  | 42.7  | 13.8 | Jet       | 2 | 10,399  | 3,080.7  | 2,749.3 | 115 | 107 |
|--------------------------------|------------------------|------|-------|-------|------|-----------|---|---------|----------|---------|-----|-----|
| Cessna 550 Citation 2          | Cessna                 | C550 | 52.2  | 47.2  | 15.1 | Jet       | 2 | 15,102  | 3,280.8  | 3,002.0 | 115 | 108 |
| Cessna 560 Citation 5<br>Ultra | Cessna                 | C560 | 45.3  | 48.9  | 13.8 | Jet       | 2 | 15,895  | 3,159.4  | 2,919.9 | 105 | 108 |
| Cessna 650 Citation 3          | Cessna                 | C650 | 53.5  | 55.4  | 16.8 | Jet       | 2 | 30,997  | 5,249.3  | 2,952.8 | 125 | 114 |
| Cessna 750 Citation 10         | Cessna                 | C750 | 64.0  | 72.2  | 19.0 | Jet       | 2 | 35,699  | 5,708.7  | 3,818.9 | 125 | 130 |
| Cessna Stationair 6            | Cessna                 | C206 | 35.8  | 28.2  | 9.8  | Piston    | 1 | 3,638   | 820.2    | 1,476.4 | 75  | 92  |
| Cessna T303 Crusader           | Cessna                 | C303 | 39.0  | 30.5  | 13.5 | Piston    | 2 | 5,159   | 1,748.7  | 1,460.0 | 85  | 110 |
| Cessna T310                    | Cessna                 | C310 | 37.1  | 31.8  | 10.8 | Piston    | 2 | 5,498   | 1,663.4  | 1,791.3 | 95  | 110 |
| Citation CJ2                   | Cessna                 | C25A | 49.5  | 46.9  | 13.8 | Jet       | 2 | 12,375  | 3,418.6  | 2,985.6 | 115 | 118 |
| Citation CJ3                   | Cessna                 | C25B | 49.5  | 46.9  | 13.8 | Jet       | 2 | 12,375  | 3,418.6  | 2,985.6 | 115 | 118 |
| Citation Excel                 | Cessna                 | C56X | 55.8  | 51.8  | 17.1 | Jet       | 2 | 19,200  | 3,461.3  | 2,919.9 | 115 | 125 |
| Falcon 10                      | Dassault               | FA10 | 42.9  | 45.5  |      | Jet       | 2 | 18,739  |          |         |     | 104 |
| Falcon 200                     | Dassault               | FA20 | 53.5  | 56.4  | 17.4 | Jet       | 2 | 29,013  | 5,249.3  | 3,608.9 | 120 | 107 |
| Falcon 2000                    | Dassault               | F2TH | 63.3  | 66.3  | 23.3 | Jet       | 2 | 35,803  | 5,249.3  | 5,249.3 | 120 | 114 |
| Falcon 50                      | Dassault               | FA50 | 61.9  | 60.8  | 29.4 | Jet       | 3 | 38,801  | 4,593.2  | 3,608.9 | 120 | 113 |
| Falcon 900                     | Dassault               | F900 | 63.3  | 66.3  | 24.9 | Jet       | 3 | 46,738  | 4,921.3  | 2,296.6 | 125 | 100 |
| DHC-5 Buffalo                  | De Havilland<br>Canada | DHC5 | 65.0  | 49.5  | 19.4 | Turboprop | 2 | 12,500  | 1,640.4  | 984.3   | 80  | 77  |
| DHC-7 Dash 7                   | De Havilland<br>Canada | DHC7 | 93.2  | 80.7  | 26.2 | Turboprop | 4 | 47,003  | 2,952.8  | 3,280.8 | 90  | 83  |
| DHC-8-100 Dash 8               | De Havilland<br>Canada | DH8A | 85.0  | 73.2  | 24.6 | Turboprop | 2 | 34,502  | 2,952.8  | 2,952.8 | 100 | 100 |
| DHC-8-300 Dash 8               | De Havilland<br>Canada | DH8C | 89.9  | 84.3  | 24.6 | Turboprop | 2 | 41,099  | 3,608.9  | 3,280.8 | 110 | 90  |
| DHC-8-400 Dash 8               | De Havilland<br>Canada | DH8D | 93.2  | 107.6 | 27.2 | Turboprop | 2 | 63,930  | 4,265.1  | 3,608.9 | 115 | 115 |
| DC-8 Stage 3 Noise<br>Aircraft | Douglas                | DC8Q | 142.4 | 150.6 | 42.3 | Jet       | 4 | 324,961 | 9,842.5  | 6,561.7 | 130 | 137 |
| DC-8-50                        | Douglas                | DC85 | 142.4 | 150.6 | 42.3 | Jet       | 4 | 324,961 | 9,842.5  | 6,561.7 | 130 | 137 |
| DC-8-60                        | Douglas                | DC86 | 142.4 | 187.3 | 42.3 | Jet       | 4 | 349,874 | 9,842.5  | 6,561.7 | 130 | 137 |
| DC-8-70                        | Douglas                | DC87 | 148.3 | 187.3 | 43.0 | Jet       | 4 | 357,204 | 10,006.6 | 6,561.7 | 160 | 150 |
| DC-9-10                        | Douglas                | DC91 | 89.6  | 119.4 | 27.5 | Jet       | 2 | 110,099 | 6,889.8  | 4,921.3 | 140 | 127 |
| DC-9-30                        | Douglas                | DC93 | 89.6  | 119.4 | 27.6 | Jet       | 2 | 110,099 | 6,889.8  | 4,921.3 | 140 | 127 |
| DC-9-40                        | Douglas                | DC94 | 93.5  | 133.5 | 28.0 | Jet       | 2 | 121,109 | 6,889.8  | 4,921.3 | 140 | 130 |

(continued on next page)

| Aircraft Name                     | Manufacturer            | ICAO<br>Code | Wingspan<br>(ft) | Length<br>(ft) | Height (ft) | Engine<br>Type | Engines<br>(#) | MTOW<br>(lb) | Takeoff<br>Distance<br>(ft) | Landing<br>Distance<br>(ft) | V2<br>(kts) | Approach<br>Speed<br>(kts) |
|-----------------------------------|-------------------------|--------------|------------------|----------------|-------------|----------------|----------------|--------------|-----------------------------|-----------------------------|-------------|----------------------------|
| DC-9-50                           | Douglas                 | DC95         | 93.5             | 133.5          | 27.9        | Jet            | 2              | 121,109      | 6,889.8                     | 4,921.3                     | 140         | 132                        |
| DC-9-50                           | Douglas                 | DC95         | 93.5             | 133.5          | 27.9        | Jet            | 2              | 121,109      | 6,889.8                     | 4,921.3                     | 140         | 132                        |
| EMB-110 Bandeirante               | Embraer                 | E110         | 50.2             | 46.6           | 16.1        | Turboprop      | 2              | 13,007       | 3,937.0                     | 4,265.1                     | 90          | 92                         |
| EMB-120 Brasilia                  | Embraer                 | E120         | 65.0             | 65.6           | 21.0        | Turboprop      | 2              | 26,455       | 4,593.2                     | 4,593.2                     | 120         | 120                        |
| EMB-145                           | Embraer                 | E145         | 65.7             | 98.0           | 22.2        | Jet            | 2              | 46,734       | 6,561.7                     | 4,429.1                     | 130         | 135                        |
| EMB-145XR                         | Embraer                 | E45X         | 68.9             | 98.0           | 22.2        | Jet            | 2              | 46,734       | 6,561.7                     | 4,429.1                     | 130         | 135                        |
| Embraer 140                       | Embraer                 | E140         | 65.7             | 93.3           | 22.1        | Jet            | 2              | 46,518       | 6,069.6                     | 4,527.6                     | 130         | 135                        |
| Embraer 175                       | Embraer                 | E175         | 85.3             | 103.9          | 31.9        | Jet            | 2              | 82,673       | 7,362.2                     | 4,137.1                     | 140         | 145                        |
| Embraer 195                       | Embraer                 | E195         | 94.2             | 126.8          | 34.6        | Jet            | 2              | 107,564      | 7,149.0                     | 4,206.0                     | 140         | 145                        |
| ERJ-135                           | Embraer                 | E135         | 65.7             | 86.4           | 22.2        | Jet            | 2              | 44,070       | 5,774.3                     | 4,461.9                     | 125         | 130                        |
| ERJ-170                           | Embraer                 | E170         | 85.3             | 98.1           | 32.3        | Jet            | 2              | 79,344       | 5,393.7                     | 4,176.5                     | 140         | 145                        |
| ERJ-190                           | Embraer                 | E190         | 94.2             | 118.9          | 34.7        | Jet            | 2              | 105,359      | 6,745.4                     | 4,340.6                     | 140         | 145                        |
| 328 Jet Envoy 3                   | Fairchild-<br>Dornier   | J328         | 68.8             | 69.9           | 23.6        | Jet            | 2              | 33,510       | 4,265.1                     | 3,937.0                     | 135         | 120                        |
| Fairchild-Dornier 328             | Fairchild-<br>Dornier   | D328         | 68.8             | 69.3           | 23.9        | Turboprop      | 2              | 30,843       | 3,280.8                     | 3,937.0                     | 110         | 110                        |
| F-27 Friendship                   | Fokker                  | F27          | 95.1             | 75.8           | 27.9        | Turboprop      | 2              | 44,996       | 2,296.6                     | 1,968.5                     | 100         | 120                        |
| F-28 Fellowship                   | Fokker                  | F28          | 88.8             | 89.9           | 27.9        | Jet            | 2              | 72,995       | 5,577.4                     | 3,280.8                     | 135         | 125                        |
| Fokker 100                        | Fokker                  | F100         | 92.2             | 116.5          | 27.9        | Jet            | 2              | 95,659       | 5,577.4                     | 4,593.2                     | 135         | 130                        |
| Fokker 50                         | Fokker                  | F50          | 95.1             | 82.7           | 27.2        | Turboprop      | 2              | 43,982       | 3,608.9                     | 3,608.9                     | 120         | 120                        |
| Fokker 70                         | Fokker                  | F70          | 95.5             | 101.4          | 27.9        | Turboprop      | 2              | 71,981       | 4,265.1                     | 3,937.0                     | 125         | 120                        |
| Greyhound C2                      | Grumman                 | C2           | 80.7             | 57.7           | 18.4        | Turboprop      | 2              | 54,426       | 2,608.3                     | 1,476.4                     | 105         | 105                        |
| 695 JetProp Commander<br>980/1000 | Gulfstream<br>Aerospace | AC95         | 52.2             | 43.0           | 15.1        | Turboprop      | 2              | 11,199       | 1,640.4                     | 1,640.4                     | 100         | 500                        |
| G-1159 Gulfstream 2               | Gulfstream<br>Aerospace | GLF2         | 68.1             | 79.1           |             | Jet            | 2              | 65,301       |                             |                             |             | 141                        |
| G-1159A Gulfstream 3              | Gulfstream<br>Aerospace | GLF3         | 77.8             | 83.0           | 24.6        | Jet            | 2              | 69,710       | 5,905.5                     | 3,280.8                     | 145         | 136                        |
| G-1159C Gulfstream 4              | Gulfstream<br>Aerospace | GLF4         | 77.8             | 88.3           | 24.3        | Jet            | 2              | 73,193       | 5,249.3                     | 3,280.8                     | 145         | 128                        |
| G-1159D Gulfstream 5              | Gulfstream<br>Aerospace | GLF5         | 93.5             | 96.5           | 25.9        | Jet            | 2              | 90,689       | 5,150.9                     | 2,900.3                     | 145         | 145                        |
| Ilyushin IL-62                    | Ilyushin                | IL62         | 141.7            | 174.2          | 40.7        | Jet            | 4              | 363,763      | 10,826.8                    | 7,545.9                     | 150         | 152                        |
| Ilyushin IL-96                    | Ilyushin                | IL96         | 197.2            | 181.4          | 57.4        | Jet            | 4              | 595,248      | 9,186.4                     | 6,561.7                     | 150         | 150                        |

|                | Israel<br>Aerospace               |      |       |       |      |           |   |         |          |         |     |     |
|----------------|-----------------------------------|------|-------|-------|------|-----------|---|---------|----------|---------|-----|-----|
| 1124 Westwind  | Industries                        | WW24 | 44.9  | 52.2  | 15.7 | Jet       | 2 | 22,928  | 4,839.2  | 2,460.6 | 125 | 129 |
| 1125 Astra     | Israel<br>Aerospace<br>Industries | ASTR | 52.8  | 55.4  | 18.0 | Jet       | 2 | 24,648  | 5,249.3  | 2,952.8 | 130 | 126 |
| 1125 Astra     | Israel                            | ASIK | 52.0  | 55.4  | 10.0 | 501       | 2 | 24,040  | 5,247.5  | 2,752.0 | 150 | 120 |
| 1126 Galaxy    | Aerospace<br>Industries           | GALX | 58.1  | 62.3  | 21.3 | Jet       | 2 | 34,851  | 5,905.5  | 3,444.9 | 125 | 130 |
| Learjet 24     | Learjet                           | LJ24 | 35.1  | 43.0  |      | Jet       | 2 | 13,001  |          |         |     | 128 |
| Learjet 25     | Learjet                           | LJ25 | 35.4  | 47.6  | 12.1 | Jet       | 2 | 14,991  | 3,937.0  | 2,952.8 | 130 | 137 |
| Learjet 31     | Learjet                           | LJ31 | 43.6  | 48.6  | 12.5 | Jet       | 2 | 15,498  | 3,608.9  | 2,952.8 | 130 | 120 |
| Learjet 35     | Learjet                           | LJ35 | 39.4  | 48.6  | 12.1 | Jet       | 2 | 18,298  | 4,265.1  | 2,952.8 | 140 | 125 |
| Learjet 35     | Learjet                           | LJ35 | 39.4  | 48.6  | 12.1 | Jet       | 2 | 18,298  | 4,265.1  | 2,952.8 | 140 | 125 |
| Learjet 45     | Learjet                           | LJ45 | 47.9  | 58.1  | 14.1 | Jet       | 2 | 19,511  | 4,265.1  | 2,952.8 | 140 | 140 |
| Learjet 55     | Learjet                           | LJ55 | 43.6  | 55.1  | 14.8 | Jet       | 2 | 21,010  | 4,593.2  | 3,280.8 | 140 | 140 |
| Learjet 60     | Learjet                           | LJ60 | 44.0  | 58.7  | 14.8 | Jet       | 2 | 23,104  | 5,249.3  | 3,608.9 | 140 | 140 |
| AC-130 Spectre | Lockheed                          | C130 | 132.5 | 97.8  | 38.7 | Turboprop | 4 | 155,007 | 3,608.9  | 2,624.7 | 120 | 130 |
| Electra        | Lockheed                          | L188 | 99.1  | 104.3 | 32.8 | Turboprop | 4 | 112,987 | 4,265.1  | 2,952.8 | 120 | 130 |
| L-1011 TriStar | Lockheed                          | L101 | 155.5 | 178.1 | 55.4 | Jet       | 3 | 429,990 | 7,874.0  | 5,905.5 | 150 | 138 |
| P-3 Orion      | Lockheed                          | P3   | 99.7  | 116.8 | 0.0  | Turboprop | 4 | 135,000 |          |         |     | 134 |
| DC-10          | McDonnell<br>Douglas              | DC10 | 165.4 | 180.4 | 58.1 | Jet       | 3 | 572,009 | 9,842.5  | 5,905.5 | 150 | 136 |
| MD-11          | McDonnell<br>Douglas              | MD11 | 169.9 | 200.8 | 57.7 | Jet       | 3 | 630,500 | 10,170.6 | 6,889.8 | 160 | 155 |
| MD-80          | McDonnell<br>Douglas              | MD80 | 107.8 | 147.7 | 30.2 | Jet       | 3 | 149,500 | 6,732.3  | 5,200.1 | 140 | 150 |
| MD-81          | McDonnell<br>Douglas              | MD81 | 107.8 | 147.7 | 30.2 | Jet       | 3 | 149,500 | 6,732.3  | 5,200.1 | 140 | 150 |
| MD-82          | McDonnell<br>Douglas              | MD82 | 107.8 | 147.7 | 30.2 | Jet       | 3 | 149,500 | 6,732.3  | 5,200.1 | 140 | 150 |
| MD-83          | McDonnell<br>Douglas              | MD83 | 107.8 | 147.7 | 30.2 | Jet       | 3 | 160,001 | 6,732.3  | 5,200.1 | 140 | 150 |
| MD-88          | McDonnell<br>Douglas              | MD88 | 107.8 | 147.7 | 30.2 | Jet       | 3 | 149,500 | 6,732.3  | 5,200.1 | 140 | 150 |
| LR-1 Marquise  | Mitsubishi                        | MU2  | 39.0  | 33.1  | 12.8 | Turboprop | 2 | 10,053  | 2,132.5  | 1,968.5 | 120 | 88  |
| Aerostar 200   | Mooney                            | M20P | 35.1  | 23.3  | 8.2  | Piston    | 1 | 2,579   | 1,476.4  | 820.2   | 70  | 70  |

(continued on next page)

| Aircraft Name         | Manufacturer | ICAO<br>Code | Wingspan<br>(ft) | Length<br>(ft) | Height (ft) | Engine<br>Type | Engines<br>(#) | MTOW<br>(lb) | Takeoff<br>Distance<br>(ft) | Landing<br>Distance<br>(ft) | V2<br>(kts) | Approach<br>Speed<br>(kts) |
|-----------------------|--------------|--------------|------------------|----------------|-------------|----------------|----------------|--------------|-----------------------------|-----------------------------|-------------|----------------------------|
| Observer              | Partenavia   | P68          | 39.4             | 30.8           | 11.2        | Piston         | 2              | 4,586        | 1,312.3                     | 1,968.5                     | 75          | 73                         |
| P-180 Avanti          | Piaggio      | P180         | 45.9             | 47.2           | 12.8        | Turboprop      | 2              | 11,552       | 2,952.8                     | 2,952.8                     | 120         | 120                        |
| Astra                 | Pilatus      | PC7          | 34.1             | 32.2           | 10.5        | Turboprop      | 1              | 6,393        | 984.3                       | 1,312.3                     | 90          | 90                         |
| Eagle                 | Pilatus      | PC12         | 53.1             | 47.2           | 14.1        | Turboprop      | 1              | 9,921        | 1,968.5                     | 1,804.5                     | 110         | 85                         |
| Apache                | Piper        | PA23         | 37.0             | 27.1           | 10.3        | Piston         | 2              | 4,799        |                             |                             |             |                            |
| Arrow 4               | Piper        | P28T         | 35.4             | 27.2           | 8.2         | Piston         | 1              | 2,910        | 1,148.3                     | 656.2                       | 70          | 70                         |
| Aztec                 | Piper        | PA27         | 37.4             | 31.2           | 10.2        | Piston         | 2              | 5,203        | 984.3                       | 1,640.4                     | 75          | 70                         |
| Cherokee Lance        | Piper        | P32R         | 36.1             | 28.2           | 8.5         | Piston         | 1              | 3,616        | 1,640.4                     | 1,804.5                     | 75          | 75                         |
| Cherokee Six          | Piper        | PA32         | 36.1             | 26.9           | 8.2         | Piston         | 1              | 3,616        | 1,640.4                     | 1,804.5                     | 75          | 75                         |
| Cheyenne 2            | Piper        | PAY2         | 42.7             | 36.4           | 12.8        | Turboprop      | 2              | 8,995        | 2,132.5                     | 2,460.6                     | 100         | 100                        |
| Cheyenne 3            | Piper        | PAY3         | 47.6             | 43.3           | 14.8        | Turboprop      | 2              | 11,244       | 2,296.6                     | 2,132.5                     | 105         | 105                        |
| Cheyenne 400          | Piper        | PAY4         | 47.6             | 43.3           | 17.1        | Turboprop      | 2              | 12,059       | 2,296.6                     | 2,132.5                     | 125         | 110                        |
| Comanche              | Piper        | PA24         | 36.0             | 24.1           | 7.5         | Piston         | 1              | 2,551        |                             |                             |             |                            |
| Malibu Meridian       | Piper        | P46T         | 43.0             | 29.5           | 11.5        | Turboprop      | 1              | 4,740        | 1,476.4                     | 1,476.4                     | 80          | 75                         |
| Malibu Mirage         | Piper        | PA46         | 43.0             | 28.5           | 11.5        | Piston         | 1              | 4,299        | 1,476.4                     | 1,476.4                     | 80          | 75                         |
| Navajo Chieftain      | Piper        | PA31         | 40.7             | 32.5           | 13.1        | Piston         | 2              | 6,504        | 1,312.3                     | 1,968.5                     | 90          | 100                        |
| PA-28-140 Cherokee    | Piper        | P28A         | 35.1             | 24.0           | 7.2         | Piston         | 1              | 2,425        | 984.3                       | 984.3                       | 65          | 65                         |
| PA-28R Cherokee Arrow | Piper        | P28R         | 29.9             | 24.3           | 7.9         | Piston         | 1              | 2,491        | 984.3                       | 984.3                       | 70          | 70                         |
| Seminole              | Piper        | PA44         | 38.7             | 27.6           | 8.5         | Piston         | 2              | 3,792        | 984.3                       | 1,312.3                     | 75          | 80                         |
| Seneca                | Piper        | PA34         | 39.0             | 28.5           | 9.8         | Piston         | 2              | 4,762        | 984.3                       | 1,312.3                     | 80          | 80                         |
| Tomahawk              | Piper        | PA38         | 35.1             | 23.0           | 9.2         | Piston         | 1              | 1,676        | 820.2                       | 656.2                       | 60          | 65                         |
| Twin Comanche         | Piper        | PA30         | 36.0             | 25.0           | 8.3         | Piston         | 2              | 3,600        |                             |                             |             |                            |
| 400 Beechjet          | Raytheon     | BE40         | 43.6             | 48.6           | 13.8        | Jet            | 2              | 16,094       | 3,937.0                     | 3,608.9                     | 130         | 111                        |
| 90 King Air           | Raytheon     | BE9L         | 50.2             | 35.4           | 14.1        | Turboprop      | 2              | 10,099       | 2,296.6                     | 1,246.7                     | 100         | 100                        |
| Bae 125-1000          | Raytheon     | H25C         | 51.5             | 53.8           | 17.1        | Jet            | 2              | 30,997       | 6,233.6                     | 2,916.7                     | 125         | 132                        |
| Bae 125-700/800       | Raytheon     | H25B         | 54.5             | 51.2           | 18.0        | Jet            | 2              | 27,403       | 5,577.4                     | 2,952.8                     | 125         | 125                        |
| Beech 1900            | Raytheon     | B190         | 58.1             | 57.7           | 15.4        | Turboprop      | 2              | 16,954       | 3,773.0                     | 2,706.7                     | 110         | 113                        |
| Beech 36 Bonanza      | Raytheon     | BE36         | 27.6             | 26.6           | 8.5         | Piston         | 1              | 3,638        | 1,148.3                     | 1,476.4                     | 75          | 75                         |
| Beech 58 Baron        | Raytheon     | BE58         | 37.7             | 29.9           | 9.7         | Piston         | 2              | 5,512        | 2,296.6                     | 1,968.5                     | 100         | 96                         |
| Super King Air 200    | Raytheon     | BE20         | 54.5             | 44.0           | 14.8        | Turboprop      | 2              | 12,500       | 1,870.1                     | 1,771.7                     | 115         | 103                        |
| Super King Air 350    | Raytheon     | B350         | 58.1             | 46.6           | 14.4        | Turboprop      | 2              | 14,991       | 3,280.8                     | 2,690.3                     | 120         | 110                        |

| Aero Commander 500  | Rockwell<br>International | AC50 | 48.9 | 36.7 | 15.1 | Piston    | 2 | 6,746  | 1,312.3 | 1,312.3 | 80  | 97  |
|---------------------|---------------------------|------|------|------|------|-----------|---|--------|---------|---------|-----|-----|
|                     | Rockwell                  |      |      |      |      |           |   |        |         |         |     |     |
| Sabreliner 60       | International             | SBR1 | 44.5 | 48.3 |      | Jet       | 2 | 20,000 |         |         |     | 120 |
| Turbo Commander 680 | Rockwell<br>International | AC80 | 46.8 | 44.5 |      | Turboprop | 2 | 11,199 |         |         |     | 97  |
|                     | Rockwell                  |      |      |      |      |           |   |        |         |         |     |     |
| Turbo Commander 690 | International             | AC90 | 46.7 | 44.4 | 15.0 | Turboprop | 2 | 10,251 |         |         |     | 97  |
| SAAB 2000           | SAAB                      | SB20 | 81.4 | 89.6 | 25.3 | Turboprop | 2 | 46,297 | 4,265.1 | 4,265.1 | 110 | 110 |
| SAAB 340            | SAAB                      | SF34 | 70.2 | 64.6 | 23.0 | Turboprop | 2 | 28,440 | 4,265.1 | 3,608.9 | 110 | 115 |
| C-23 Sherpa         | Short                     | SH33 | 74.8 | 58.1 | 16.4 | Turboprop | 2 | 22,597 | 3,608.9 | 3,608.9 | 100 | 96  |
| SD3-60              | Short                     | SH36 | 74.8 | 70.9 | 24.0 | Turboprop | 2 | 27,117 | 4,265.1 | 3,608.9 | 110 | 100 |
| Short SC-7 Skyvan   | Short                     | SC7  | 65.0 | 40.0 | 15.1 | Turboprop | 2 | 13,669 | 1,968.5 | 2,296.6 | 90  | 90  |
| Fairchiled 300      | Swearingen                | SW3  | 46.3 | 42.3 | 16.7 | Turboprop | 2 | 12,566 | 4,265.1 | 4,265.1 | 115 | 120 |
| Socata TBM-700      | TBM                       | TBM7 | 40.0 | 34.1 | 13.8 | Turboprop | 1 | 6,614  | 2,132.5 | 1,640.4 | 85  | 80  |

## APPENDIX E

# EMAS

The Federal Aviation Administration (FAA) requires that standard-size runway safety areas (RSA) be provided to minimize the risks associated with aircraft overruns and undershoots. In some instances, however, natural or manmade obstacles, local developments, surface conditions, or environmental constraints make it difficult or impossible to comply with the FAA standards.

As part of the study described in *ACRP Report 3*, historical records of accidents and incidents were compiled and used to develop risk models for overrun and undershoot events. However, the study did not address the evaluation of RSAs when EMAS is used. The models used in the approach developed in this study are based on data provided by ESCO.

To evaluate the risk mitigation provided by EMAS, it is necessary to normalize the EMAS distance to an equivalent conventional RSA distance so that the value can be used directly in the location probability models for landing and takeoff overruns. No adjustments are necessary to the distances entered into the location models for landing undershoots.

To accomplish this, the length of the conventional RSA is modified by a runway length factor (RLF), which is calculated by taking into account the effectiveness of the EMAS in decelerating a specific type of aircraft. In other words, the length of the conventional RSA is increased to provide an equivalent distance where the aircraft can stop when entering the EMAS bed at a certain speed. Figure E1 shows the schematics of an RSA with EMAS and its equivalent conventional RSA.

The relationship between the aircraft deceleration, *a*, the aircraft speed when entering the RSA, *v*, and the RSA length, *S*, is as follows:

$$a = \frac{v^2}{2S}$$
 [Eq. 1]

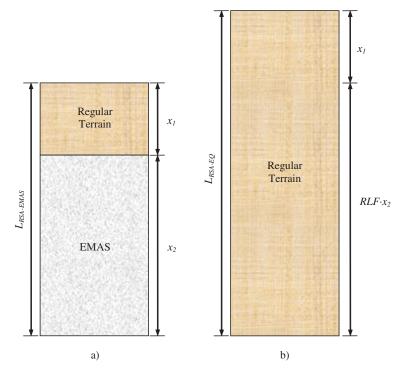
In addition, since the speed of the aircraft entering the RSA is assumed to be the same for the same aircraft entering the equivalent conventional RSA, it is established that:

$$a_{EMAS}S_{EMAS} = a_{RSA}S_{RSA}$$
 [Eq. 2]

To estimate  $a_{EMAS}$ , data provided by ESCO were used as shown next. For  $a_{RSA}$  a maximum runway exit speed of v = 70knots and a standard RSA dimension of S = 1,000 feet was employed in Eq. 1, resulting in  $a_{RSA} = 2.156$  m/s<sup>2</sup>.

The data included the necessary lengths and estimated aircraft performance in terms of the maximum runway exit speed. The study includes values for a spectrum of aircraft models and maximum takeoff weights (MTOW). Table E1 lists the aircraft manufacturers, models, and MTOW that are included in the ESCO data. Table E2 shows the data provided by ESCO.

The maximum runway exit speed for all aircrafts models was combined in a single dataset and employed in a regression analysis to generate the model for the maximum runway exit speed (v) in terms of the EMAS length and aircraft MTOW. A total of 84 data points were included in the regression. A logarithmic transformation was performed on the EMAS length and the aircraft weight before performing the analysis. The resulting regression equation is listed next, where Wis the MTOW of the aircraft in kg and S the EMAS bed length in meters.


$$v = 3.0057 - 6.8329 \log(W) + 31.1482 \log(S)$$
 [Eq. 3]

The R-squared of the linear regression was 0.89, and the standard error was equal to 2.91m/s. Figure E2 shows the relationship between the reported ESCO maximum runway exit speeds and the predicted speed values obtained using Eq. 3. The 45-degree angle dashed line represents the equality line between the values.

The maximum runway exit speed estimated using the regression equation (Eq. 3), along with the EMAS bed length ( $S_{EMAS}$ ), was input in Eq. 1 to estimate the deceleration of the RSA with EMAS bed ( $a_{EMAS}$ ). The runway length factor was then estimated as follows:

$$RLF = \frac{a_{EMAS}}{a_{RSA}}$$
[Eq. 4]

where  $a_{RSA}$  is 2.156 m/s<sup>2</sup> as explained before.



*Figure E1. Schematic of a) RSA with EMAS and b) equivalent conventional RSA.* 

| Aircraft Manufacturer | Aircraft Model   | MTOW ( $\times 10^3$ lb) |
|-----------------------|------------------|--------------------------|
| Airbus                | A-319 (B737)     | 141.0                    |
| _                     | A-320 (B737)     | 162.0                    |
| _                     | A-340            | 567.0                    |
| Boeing                | B-737-400        | 150.0                    |
| _                     | B-747            | 870.0                    |
| _                     | B-757            | 255.0                    |
| -                     | B-767            | 407.0                    |
| -                     | B-777            | 580.0                    |
| Cessna                | CITATION 560     | 16.3                     |
| Canadair              | CRJ-200          | 53.0                     |
|                       | CRJ-700          | 75.0                     |
| Embraer               | EMB-120          | 28.0                     |
| _                     | ERJ-190 (ERJ170) | 51.0                     |
| McDonnell Douglas     | MD-83 (MD 82)    | 160.0                    |
|                       |                  |                          |

Table E1. Aircraft models included in ESCO data.

#### Table E2. Data provided by ESCO.

| Aircraft         | Weight (lb) | Speed<br>(knots) | EMAS<br>(feet) | Speed<br>(m/s) |
|------------------|-------------|------------------|----------------|----------------|
| A319(B737)       | 141,000     | 80               | 550            | 41.2           |
| A319(B737)       | 141,000     | 79               | 350            | 40.6           |
| A319(B737)       | 141,000     | 40               | 120            | 20.6           |
| A320(B737)       | 162,000     | 80               | 550            | 41.2           |
| A320(B737)       | 162,000     | 75               | 350            | 38.6           |
| A320(B737)       | 162,000     | 37               | 120            | 19.0           |
| A340             | 567,000     | 70               | 550            | 36.0           |
| A340             | 567,000     | 50               | 350            | 25.7           |
| A340             | 567,000     | 28               | 120            | 14.4           |
| B747             | 870,000     | 66               | 550            | 34.0           |
| B747             | 870,000     | 47               | 350            | 24.2           |
| B747             | 870,000     | 29               | 120            | 14.9           |
| B757             | 255,000     | 80               | 550            | 41.2           |
| B757             | 255,000     | 58               | 350            | 29.8           |
| B757             | 255,000     | 31               | 120            | 15.9           |
| B767             | 407,000     | 75               | 550            | 38.6           |
| B767             | 407,000     | 54               | 350            | 27.8           |
| B767             | 407,000     | 30               | 120            | 15.4           |
| B777             | 580,000     | 70               | 550            | 36.0           |
| B777             | 580,000     | 50               | 350            | 25.7           |
| B777             | 580,000     | 29               | 120            | 14.9           |
| CITATION 560     | 16,300      | 80               | 550            | 41.2           |
| CITATION 560     | 16,300      | 77               | 350            | 39.6           |
| CITATION 560     | 16,300      | 48               | 120            | 24.7           |
| CRJ 200          | 53,000      | 80               | 550            | 41.2           |
| CRJ 200          | 53,000      | 80               | 350            | 41.2           |
| CRJ 200          | 53,000      | 45               | 120            | 23.1           |
| CRJ 700          | 75,000      | 80               | 550            | 41.2           |
| CRJ 700          | 75,000      | 77               | 350            | 39.6           |
| CRJ 700          | 75,000      | 41               | 120            | 21.1           |
| EMB 120(SAAB340) | 28,000      | 75               | 550            | 38.6           |
| EMB 120(SAAB340) | 28,000      | 70               | 350            | 36.0           |
| EMB 120(SAAB340) | 28,000      | 41               | 120            | 21.1           |
| ERJ 190(ERJ170)  | 51,800      | 80               | 550            | 41.2           |
| ERJ 190(ERJ170)  | 51,800      | 65               | 350            | 33.4           |
| ERJ 190(ERJ170)  | 51,800      | 37               | 120            | 19.0           |
| MD 83(MD 82)     | 160,000     | 80               | 550            | 41.2           |
| MD 83(MD 82)     | 160,000     | 70               | 350            | 36.0           |
| MD 83(MD 82)     | 160,000     | 35               | 120            | 18.0           |

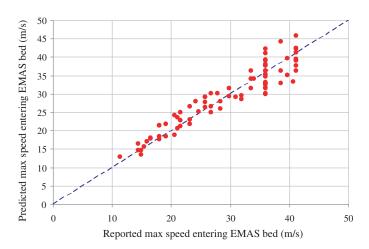



Figure E2. Relationship between reported and predicted maximum aircraft speeds entering the EMAS bed.

Subsequently, based on the relationship established in Eq. 2, RLF was multiplied by the length of the EMAS bed to estimate the equivalent length of the conventional RSA:

$$S_{RSA} = \frac{a_{EMAS}}{a_{RSA}} S_{EMAS} = RLF \quad S_{EMAS}$$
[Eq. 5]

Note that, depending on the RSA configuration and the type of aircraft, different operations will generate different RLFs.

# Risk Criteria Used by the FAA

Although the main objective of this research was to develop a tool to help airport planners evaluate RSA alternatives, the basis for the analysis was a quantitative assessment of risk associated with runway excursions and undershoots.

Risk is the composite of the likelihood of the occurrence and severity of the outcome or effect (harm) of the hazard. Severity is the measure of how bad the results of an event are predicted to be. Likelihood should be considered only after determining severity. Table F1 provides the FAA specific definitions of severity.

Likelihood is an expression of how often an event can be expected to occur at the worst credible severity. Table F2 shows FAA likelihood definitions. A risk classification (high, medium, or low) is provided based on the FAA risk matrix shown in Figure F1 and the likelihood and severity scenario for each hazard.

|                                                                                                                           | Hazard Severity Classification                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Minimal<br>5                                                                                                              | Minor<br>4                                                                                                                                                                                                                                                                               | Major<br>3                                                                                                                                                                                                                                                                                              | Hazardous<br>2                                                                                                                                                                                                                                                                                                                 | Catastrophic<br>1                                                                                                                                                                                                                                                                               |  |  |  |  |
| No damage to<br>aircraft but<br>minimal injury or<br>discomfort of little<br>consequence to<br>passenger(s) or<br>workers | <ul> <li>Minimal damage<br/>to aircraft;</li> <li>Minor injury to<br/>passengers;</li> <li>Minimal<br/>unplanned airport<br/>operations<br/>limitations (i.e.<br/>taxiway closure);</li> <li>Minor incident<br/>involving the use<br/>of airport<br/>emergency<br/>procedures</li> </ul> | <ul> <li>Major damager to<br/>aircraft and/or<br/>minor injury to<br/>passenger(s)/<br/>worker(s);</li> <li>Major unplanned<br/>disruption to<br/>airport<br/>operations;</li> <li>Serious incident;</li> <li>Deduction on the<br/>airport's ability to<br/>deal with adverse<br/>conditions</li> </ul> | <ul> <li>Severe damage to<br/>aircraft and/or<br/>serious injury to<br/>passenger(s)/<br/>worker(s);</li> <li>Complete<br/>unplanned airport<br/>closure;</li> <li>Major unplanned<br/>operations<br/>limitations (i.e.<br/>runway closure);</li> <li>Major airport<br/>damage to<br/>equipment and<br/>facilities-</li> </ul> | <ul> <li>Complete loss of<br/>aircraft and/or<br/>facilities or fatal<br/>injury in<br/>passenger(s)/wor<br/>ker(s);</li> <li>Complete<br/>unplanned airport<br/>closure and<br/>destruction of<br/>critical facilities;</li> <li>Airport facilities<br/>and equipment<br/>destroyed</li> </ul> |  |  |  |  |

#### Table F1. FAA severity definitions (FAA 2010).

|                              |                                                                                                                                          |                                                                                                                                  | ATC Op                                                 | erational                                             |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
|                              | General                                                                                                                                  | Airport Specific                                                                                                                 | Per Facility <sup>3</sup>                              | NAS-wide <sup>4</sup>                                 |
| Frequent<br>A                | Probability of<br>occurrence per<br>operation is equal<br>to or greater than<br>$1 \times 10^{-3}$                                       | Expected to occur<br>more than once per<br>week or every<br>2500 departures<br>$(4x10^{-4})$ , whichever<br>occurs sooner        | Expected to occur<br>more than once per<br>week        | Expected to occur<br>every 1-2 days                   |
| Probable<br>B                | Probability of<br>occurrence per<br>operation is less<br>than $1 \times 10^{-3}$ , but<br>equal to or greater<br>than $1 \times 10^{-5}$ | Expected to occur<br>about once every<br>month or 250,000<br>departures (4x10 <sup>-6</sup> ),<br>whichever occurs<br>sooner     | Expected to occur<br>about once every<br>month         | Expected to occur<br>several times per<br>month       |
| Remote<br>C                  | Probability of<br>occurrence per<br>operation is less<br>than $1 \times 10^{-5}$ but<br>equal to or greater<br>than $1 \times 10^{-7}$   | Expected to occur<br>about once every<br>year or 2.5 million<br>departures (4x10 <sup>-7</sup> ),<br>whichever occurs<br>sooner  | Expected to occur<br>about once every 1<br>-10 years   | Expected to occur<br>about once every<br>few months   |
| Extremely<br>Remote<br>D     | Probability of<br>occurrence per<br>operation is less<br>than $1 \times 10^{-7}$ but<br>equal to or greater<br>than $1 \times 10^{-9}$   | Expected to occur<br>once every 10-100<br>years or 25 million<br>departures (4x10 <sup>-8</sup> ),<br>whichever occurs<br>sooner | Expected to occur<br>about once every<br>10-100 years  | Expected to occur<br>about once every 3<br>years      |
| Extremely<br>Improbable<br>E | Probability of<br>occurrence per<br>operation is less<br>than 1x10 <sup>-9</sup>                                                         | Expected to occur<br>less than every 100<br>years                                                                                | Expected to occur<br>less than once<br>every 100 years | Expected to occur<br>less than once<br>every 30 years |

Table F2. FAA likelihood levels (FAA 2010).

Note: Occurrence is defined per movement.

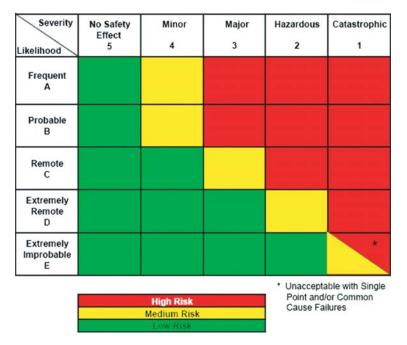



Figure F1. FAA risk matrix (FAA 1988, 2010).

## APPENDIX G

## Plan to Field Test Software Tool

#### **Objective**

The objective of this task was to test the software developed for risk analysis of runway safety areas (RSA) developed under ACRP 4-08. The feedback obtained helped improve the final software and mitigate any problems associated with its installation, operation, and analysis of results.

This plan describes the procedures used for testing the software developed in this project. It includes the identification of volunteer stakeholders that utilized a beta version to carry out analysis with sample data provided.

#### Phase I

During this phase, the software was evaluated during development before a final beta version was released to volunteers for testing.

#### Software Development and Algorithm Tests

During this phase the software algorithms and database management procedures were tested before a beta version was created.

#### Input Data Quality Assurance (QA)

Users may input incorrect information, use units that are not compatible, or enter the correct information in incorrect fields. Several help features were incorporated, including the checking of values to ensure the input was within allowable ranges.

The analysis software includes features to check missing data and advise the user to make the necessary corrections. The software will not run if there are missing data or if the values are outside normal ranges.

#### Portability

Before the release of a beta version, the software was evaluated for portability using different computers with various operational systems (e.g., Windows 7, Windows XP). The objective was to search for possible conflicts with computer operational systems and supporting software versions.

#### Installation

The installation was tested on different computers to check for problems with installation of the files required to run the program and the supporting software that is required. The analysis software makes use of common Microsoft Office products, including Excel and Access. The user must have such software to run the risk assessment analysis. Access is necessary to handle the various databases, and Excel is used to characterize the RSA's, the type of terrain, and the existing obstacles with their classification.

#### Preliminary Testing

The research team installed the software and ran some analysis using the guidance material prepared. Any problems detected were solved before the final beta release was provided to volunteers for testing.

#### Phase II

During this phase, a beta version of the software was tested by volunteers. Despite the attempts to make the software tool as user-friendly and practical as possible, the research team asked the volunteers that are familiar with airport planning

| Name        | Stakeholder | Organization          | Comments                 |
|-------------|-------------|-----------------------|--------------------------|
| Doug Mansel | Airport     | Oakland International | Chair of ACI-NA          |
|             | Operator    | Airport               | Operations and Technical |
|             |             |                       | Affairs Committee        |
| Mike Hines  | Airport     | Metropolitan          | MWAA Planner             |
|             | Operator    | Washington Airport    |                          |
|             |             | Authority             |                          |
| Don Andrews | Consultant  | Reynolds, Smith and   | Airport planning         |
|             |             | Hill                  |                          |
| Tom Cornell | Consultant  | Landrum and Brown     | Consultant               |
| Amiy Varma  | Professor   | University of North   | Chair of TRB Committee   |
|             |             | Dakota                | of Aircraft/ Airport     |
|             |             |                       | Compatibility            |
| Ernie       | Professor   | University of         | Member of TRB            |
| Heymsfield  |             | Arkansas              | Committee of Aircraft/   |
|             |             |                       | Airport Compatibility    |
| Michael A.  | Government  | FAA - AAS-100         | Engineer in the Airport  |
| Meyers      |             |                       | Engineering Division     |
| Ken Jacobs  | Government  | FAA – APP-400         | FAA Liaison for ACRP 4-  |
|             |             |                       | 01                       |

Table G1. List of volunteers to test analysis software.

and the analysis methodology rationale to provide additional suggestions to improve software and to identify any software bugs they encountered.

To facilitate the assessment, data for a couple of airports was prepared and provided to the volunteers to run the analysis.

Table G1 presents the list of eight software beta testers. The research team proposed a small number of volunteers to facilitate obtaining meaningful feedback and to ensure the research team could provide the necessary support to these volunteers during the beta testing period.

### **Perform Tests**

Beta testers installed the software and ran analyses. A user manual was provided to the testers as well. Feedback was requested through a basic questionnaire that solicited comments on the use of the software, practicality, documentation, etc.

### **Assist Volunteers**

A helpdesk was established to assist volunteers, answering questions and resolving software issues, particularly with installation. Volunteers could ask for help by phone or by e-mail. The phone number and e-mail address was included in the beta version user manual.

### **Track Problems/Bugs and Fixes**

The beta testers' feedback was recorded. Bugs were fixed as soon as possible, and the updated software was distributed to the beta testers. Suggested improvements were considered and modifications made, as warranted, both during the beta testing phase and after.

### Retest

After all bugs were fixed and improvements made, another round of internal tests to fix any new bugs was carried out.

### ACRP 4-08—Improved Models for Risk Assessment of Runway Safety Areas (RSA)

### **Analysis Software Evaluation Questionnaire**

The purpose of this software beta testing effort is to test and help improve the software for analysis of runway safety areas. Although measuring software effectiveness is no easy task, the feedback provided will help identify the need for critical improvements to the software.

Name:\_\_\_\_\_\_Organization: \_\_\_\_\_\_Position: \_\_\_\_\_\_

1. How easy was it to install the software?

- a. Difficult to install
- b. I had problems
- c. About right
- d. Easy to install

Comments:

2. How easy was it to follow the user guide and documentation?

- a. Very difficult to follow
- b. It is necessary to understand risk assessment to use it
- c. Simple guidance but satisfactory for the purpose
- d. Easy to follow

Comments:

3. Are the screens user-friendly and easy to understand?

a. No

- b. I had a few problems (see my comments)
- c. Easy to follow

Comments:

4. Was it easy to input operational data?

- a. No
- b. I had a few problems (see my comments)
- c. Yes

Comments:

5. Was it easy to input weather data?

a. No

- b. I had a few problems (see my comments)
- c. Yes

Comments:

6. Was it easy to understand output results?

- a. No
- b. I had a few problems (see my comments)
- c. Yes

Comments:

7. Please list the good and the bad points of the software.

8. Would you use this software again?

a. Yes

- b. Possibly (see my comments)
- c. No (see my comments)

9. How long did it take to run the "Example 1" analysis?\_\_\_\_\_ minutes

**10.** Any other comments that you care to offer.

#### G-4

### APPENDIX H

# Summary of Results for Software/Model Tests

The research team gathered data for the analysis of eight airports and conducted the analyses using the analysis software developed in this study. Results obtained for each airport are presented in this appendix and are compared to historical accident rates. This effort is intended to validate the models developed in Task 4 and the software developed in Task 8. Results are shown for each airport. Additional information on individual analyses can be provided upon request. Such information includes operations data, weather data, runway characteristics including declared distances, files defining each of the runway safety areas for aircraft overruns, undershoots, and veer-offs, as well as output files from analyses.

### Ted Stevens Anchorage International Airport

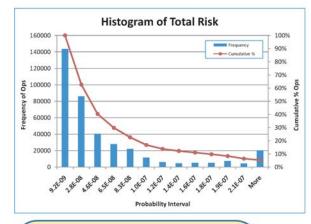


#### Risk of Accident - Summary of Results

**Overall Results** 

**Risk Analysis** 

| Summary Table |                        | Concession of the second second         |                    |                                                    |
|---------------|------------------------|-----------------------------------------|--------------------|----------------------------------------------------|
| Accident      | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for<br>TLS |
| LDOR          | 8.5E-09                | >100                                    | 0.0                | 7                                                  |
| TOOR          | 6.8E-08                | 100                                     | 0.2                | 7                                                  |
| LDUS          | 3.2E-08                | >100                                    | 0.3                | 7                                                  |
| LDVO          | 1.6E-07                | 42                                      | 2.3                | 7                                                  |
| тоvо          | 1.5E-07                | 47                                      | 2.2                | 7                                                  |
| Total         | 2.1E-07                | 16                                      | 1.3                | 3                                                  |


| Airport Annual Volume:        | 293,000 |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Anchorage International Airport:

Date of Analysis: 12/13/2010

Analyst: Hamid

Note: fields in yellow may be changed by user



#### Notes

 Fields in orange may be directly changed in spreadsheet by user
 Results for overrun and undershoot consider all movements challenging each RSA adjacent to the ends of each runway 3 - The total risk for the airport is per movement (landing and takingoff)

4 - Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs

5 - Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-off

6 - Histogram for the whole airport is for any type of event and include each movement challenging the RSA

#### Summary of Results by Runway

Risk in Events per Operation

| Type of Accident | RSA      |          |          |          |          |          |  |  |
|------------------|----------|----------|----------|----------|----------|----------|--|--|
|                  | 14       | 32       | 07R      | 25L      | 07L      | 25R      |  |  |
| LDOR             | 1.68E-09 | 1.62E-08 | 1.52E-09 | 6.76E-09 | 4.26E-09 | 1.07E-08 |  |  |
| TOOR             | 7.40E-08 | 7.85E-08 | 2.54E-08 | 3.44E-08 | 2.62E-08 | 5.87E-08 |  |  |
| LDUS             | 2.46E-08 | 3.61E-08 | 2.92E-08 | 2.64E-08 | 4.90E-08 | 1.63E-08 |  |  |
| LDVO             | 1.07E-07 | 2.41E-07 | 1.76E-07 | 1.10E-07 | 1.52E-07 | 4.75E-08 |  |  |
| тоvо             | 8.71E-08 | 1.57E-07 | 6.93E-08 | 9.05E-08 | 8.15E-08 | 2.08E-08 |  |  |

Average # of Years Between Accidents

| Type of Accident | RSA  |      |      |      |      |      |  |
|------------------|------|------|------|------|------|------|--|
|                  | 14   | 32   | 07R  | 25L  | 07L  | 25R  |  |
| LDOR             | >100 | >100 | >100 | >100 | >100 | >100 |  |
| TOOR             | >100 | >100 | >100 | >100 | >100 | >100 |  |
| LDUS             | >100 | >100 | >100 | >100 | >100 | >100 |  |
| LDVO             | >100 | >100 | 57   | >100 | >100 | >100 |  |
| тоvо             | >100 | 51   | >100 | >100 | >100 | >100 |  |

Percent Events Above 1.0E-06

| Type of Accident | RSA  |      |      |      |      |      |  |
|------------------|------|------|------|------|------|------|--|
|                  | 14   | 32   | 07R  | 25L  | 07L  | 25R  |  |
| LDOR             | 0.00 | 0.11 | 0.00 | 0.03 | 0.00 | 0.08 |  |
| TOOR             | 0.27 | 0.27 | 0.04 | 0.00 | 0.00 | 0.00 |  |
| LDUS             | 0.06 | 0.00 | 0.29 | 0.00 | 0.31 | 0.00 |  |
| LDVO             | 0.68 | 5.76 | 2.86 | 1.42 | 1.37 | 0.00 |  |
| тоvо             | 0.93 | 2.53 | 0.00 | 0.69 | 0.25 | 0.00 |  |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA   |       |        |       |       |       |  |  |
|------------------|-------|-------|--------|-------|-------|-------|--|--|
|                  | 14    | 32    | 07R    | 25L   | 07L   | 25R   |  |  |
| LDOR             | 347   | 9327  | 1269   | 52525 | 122   | 12722 |  |  |
| TOOR             | 65647 | 1834  | 8566   | 34    | 8     | 1967  |  |  |
| LDUS             | 9327  | 347   | 52525  | 1269  | 12722 | 122   |  |  |
| LDVO             | 9327  | 347   | 52525  | 1269  | 12722 | 122   |  |  |
| тоvо             | 1834  | 65647 | 34     | 8566  | 1967  | 8     |  |  |
| Total            | 86482 | 77502 | 114919 | 63663 | 27541 | 14941 |  |  |

### Yeager Airport



#### **Risk of Accident - Summary of Results**

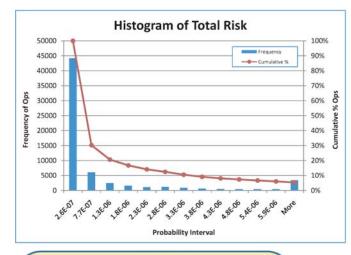
**Overall Results** 

**Risk Analysis** 

#### Summary of Results by Runway

Risk in Events per Operation

| Summary Table |                        |                                         |                    |                                             |          |  |  |
|---------------|------------------------|-----------------------------------------|--------------------|---------------------------------------------|----------|--|--|
| Accident      | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for | Тур      |  |  |
|               | riobability            | citical incluent                        | 125                | TLS                                         | LDOR     |  |  |
| LDOR          | 9.9E-06                | 4                                       | 76.6               | 40                                          | TOOR     |  |  |
| TOOR          | 1.0E-07                | >100                                    | 0.5                | 40                                          | LDUS     |  |  |
| LDUS          | 4.7E-07                | 86                                      | 9.0                | 40                                          | LDVO     |  |  |
| LDVO          | 3.6E-07                | >100                                    | 5.0                | 40                                          | тоvо     |  |  |
| тоvо          | 1.5E-07                | >100                                    | 1.9                | 40                                          | <u>.</u> |  |  |
| Total         | 5.5E-06                | 4                                       | 23.8               | 20                                          | Avera    |  |  |


| Airport Annual Volume:        | 49,516  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Airport: Yeager Airport

Date of Analysis: 12/13/2010

Analyst: **Regis Carvalho** 

Note: fields in yellow may be changed by user



#### Notes

- 1 Fields in orange may be directly changed in spreadsheet by user
- 2 Results for overrun and undershoot consider all movements
- challenging each RSA adjacent to the ends of each runway 3 - The total risk for the airport is per movement (landing and taking-
- off)
- 4 Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs
- 5 Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and
- the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include
- each movement challenging the RSA

#### RSA pe of Accident 23 05 15 33 4.36E-05 1.11E-05 7.84E-06 1.13E-07 9.42E-08 8.63E-08 4.94E-07 3.35E-07 1.80E-06 2.82E-07 3.84E-07 1.89E-06 1.19E-07 1.10E-07 1.46E-06

age # of Years Between Accidents

| Turne of Assidant | RSA  |      |      |      |  |  |
|-------------------|------|------|------|------|--|--|
| Type of Accident  | 05   | 23   | 15   | 33   |  |  |
| LDOR              | 10   | 8    | 40   |      |  |  |
| TOOR              | >100 | >100 | >100 |      |  |  |
| LDUS              | >100 | >100 |      | >100 |  |  |
| LDVO              | >100 | >100 |      | >100 |  |  |
| тоvо              | >100 | >100 |      | >100 |  |  |

#### Percent Events Above 1.0E-06

| Tune of Assident | RSA   |       |       |       |  |  |
|------------------|-------|-------|-------|-------|--|--|
| Type of Accident | 05    | 23    | 15    | 33    |  |  |
| LDOR             | 76.52 | 76.13 | 91.86 |       |  |  |
| TOOR             | 0.83  | 0.32  | 0.00  |       |  |  |
| LDUS             | 8.94  | 7.77  |       | 29.83 |  |  |
| LDVO             | 3.14  | 5.71  |       | 42.37 |  |  |
| тоvо             | 1.35  | 1.50  |       | 22.15 |  |  |

#### Summary of Operations Challenging the RSAs

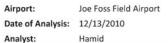
Movements Challenging each RSA

| Turne of Assidant | RSA   |       |     |     |  |  |
|-------------------|-------|-------|-----|-----|--|--|
| Type of Accident  | 05    | 23    | 15  | 33  |  |  |
| LDOR              | 4570  | 7809  | 295 | 0   |  |  |
| TOOR              | 5520  | 6812  | 316 | 0   |  |  |
| LDUS              | 7809  | 4570  | 0   | 295 |  |  |
| LDVO              | 7809  | 4570  | 0   | 295 |  |  |
| тоvо              | 6812  | 5520  | 0   | 316 |  |  |
| Total             | 32520 | 29281 | 611 | 906 |  |  |

## Sioux Falls Regional Airport

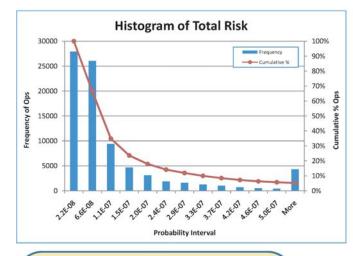


#### Risk of Accident - Summary of Results


**Overall Results** 

Summary Table

| Accident | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for<br>TLS |
|----------|------------------------|-----------------------------------------|--------------------|----------------------------------------------------|
| LDOR     | 3.1E-07                | 93                                      | 4.4                | 29                                                 |
| TOOR     | 1.1E-07                | >100                                    | 0.8                | 29                                                 |
| LDUS     | 7.4E-08                | >100                                    | 0.6                | 29                                                 |
| LDVO     | 2.9E-07                | >100                                    | 3.6                | 29                                                 |
| тоvо     | 1.5E-07                | >100                                    | 2.0                | 29                                                 |
| Total    | 4.7E-07                | 31                                      | 2.7                | 14                                                 |


**Risk Analysis** 

| Airport Annual Volume:        | 69,000  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |





Note: fields in yellow may be changed by user



#### Notes

- 1 Fields in orange may be directly changed in spreadsheet by user 2 - Results for overrun and undershoot consider all movements challenging each RSA adjacent to the ends of each runway
- 3 The total risk for the airport is per movement (landing and takingoff)
- 4 Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs
  5 Each landing will challenge the RSA adjacent to the arrival end for
- undershoots, the RSA adjacent to the departure end for overruns and
- the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include
- each movement challenging the RSA

Risk in Events per Operation

| Tune of Assidant | RSA      |          |          |          |  |  |  |
|------------------|----------|----------|----------|----------|--|--|--|
| Type of Accident | 03       | 21       | 15       | 33       |  |  |  |
| LDOR             | 2.17E-07 | 1.10E-07 | 6.21E-07 | 2.32E-07 |  |  |  |
| TOOR             | 8.87E-08 | 4.58E-08 | 1.33E-07 | 2.63E-07 |  |  |  |
| LDUS             | 6.00E-08 | 7.18E-08 | 1.10E-07 | 7.36E-08 |  |  |  |
| LDVO             | 6.65E-08 | 3.92E-07 | 3.83E-07 | 3.02E-07 |  |  |  |
| тоvо             | 1.12E-07 | 1.65E-07 | 1.02E-07 | 1.86E-07 |  |  |  |

#### Average # of Years Between Accidents

| Tune of Assident | RSA  |      |      |      |  |
|------------------|------|------|------|------|--|
| Type of Accident | 03   | 21   | 15   | 33   |  |
| LDOR             | >100 | >100 | >100 | >100 |  |
| TOOR             | >100 | >100 | >100 | >100 |  |
| LDUS             | >100 | >100 | >100 | >100 |  |
| LDVO             | >100 | >100 | >100 | >100 |  |
| тоvо             | >100 | >100 | >100 | >100 |  |

#### Percent Events Above 1.0E-06

| Type of Accident | RSA  |      |      |      |  |
|------------------|------|------|------|------|--|
| Type of Accident | 03   | 21   | 15   | 33   |  |
| LDOR             | 3.08 | 0.69 | 9.48 | 2.97 |  |
| TOOR             | 0.55 | 0.00 | 1.42 | 1.90 |  |
| LDUS             | 0.26 | 0.70 | 0.80 | 0.63 |  |
| LDVO             | 0.87 | 5.43 | 4.56 | 3.02 |  |
| тоvо             | 1.43 | 2.86 | 0.98 | 1.86 |  |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA   |       |       |       |  |
|------------------|-------|-------|-------|-------|--|
| Type of Accident | 03    | 21    | 15    | 33    |  |
| LDOR             | 5983  | 3886  | 4907  | 1884  |  |
| TOOR             | 6052  | 3706  | 5011  | 1736  |  |
| LDUS             | 3886  | 5983  | 1884  | 4907  |  |
| LDVO             | 3886  | 5983  | 1884  | 4907  |  |
| тоvо             | 3706  | 6052  | 1736  | 5011  |  |
| Total            | 23513 | 25610 | 15422 | 18445 |  |

#### Summary of Results by Runway

## Fort Lauderdale Executive Airport



### Risk of Accident - Summary of Results

2.0

**Overall Results** Summary Table

Accident

LDOR

TOOR

LDUS

LDVO

τονο

Total

**Risk Analysis** 

Average

Probability

1.0E-06

4.1E-08

2.5E-07

3.3E-07

1.1E-07

8.3E-07

Avrg # of

Critical In

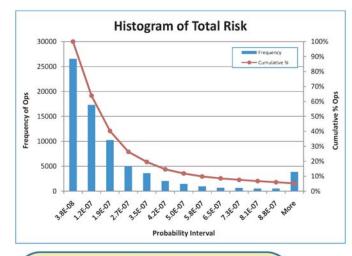
7

#### Summary of Results by Runway

Risk in Events per Operation

|                                |                    |                                             | indiana areana par apa |          |    |
|--------------------------------|--------------------|---------------------------------------------|------------------------|----------|----|
| # of Years to<br>ical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for | Type of Accident       | 08       |    |
|                                |                    | TLS                                         | LDOR                   | 4.41E-07 | 7. |
| 12                             | 15.2               | 12                                          | TOOR                   | 2.87E-08 | 4. |
| >100                           | 0.0                | 12                                          | LDUS                   | 2.51E-07 | 2  |
| 46                             | 1.8                | 12                                          | LDVO                   | 3.10E-07 | 2. |
| 36                             | 7.4                | 12                                          | тоvо                   | 1.05E-07 | 9. |
| >100                           | 0.1                | 12                                          |                        |          |    |

6


| Airport Annual Volume:        | 169,000 |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Airport: Fort Lauderdale Executive Airport

Date of Analysis: 12/13/2010

Analyst: Hamid

Note: fields in yellow may be changed by user



#### Notes

- 1 Fields in orange may be directly changed in spreadsheet by user 2 - Results for overrun and undershoot consider all movements
- challenging each RSA adjacent to the ends of each runway
- 3 The total risk for the airport is per movement (landing and takingoff)
- 4 Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs
- 5 Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and
- the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include
- each movement challenging the RSA

#### RSA 26 13 31 7.90E-07 1.27E-06 8.21E-06 6.93E-08 4.09E-08 2.36E-08 7.93E-07 2.72E-07 2.51E-07 2.45E-07 1.13E-06 5.00E-07 9.47E-08 1.55E-07 1.75E-07

Average # of Years Between Accidents

| Type of Accident | RSA  |      |      |      |  |
|------------------|------|------|------|------|--|
|                  | 08   | 26   | 13   | 31   |  |
| LDOR             | >100 | 18   | >100 | 45   |  |
| TOOR             | >100 | >100 | >100 | >100 |  |
| LDUS             | 57   | >100 | >100 | >100 |  |
| LDVO             | 46   | >100 | >100 | >100 |  |
| τονο             | >100 | >100 | >100 | >100 |  |

#### Percent Events Above 1.0E-06

| Type of Accident | RSA  |       |       |       |  |
|------------------|------|-------|-------|-------|--|
| Type of Accident | 08   | 26    | 13    | 31    |  |
| LDOR             | 9.80 | 13.68 | 26.87 | 66.53 |  |
| TOOR             | 0.00 | 0.01  | 0.00  | 0.39  |  |
| LDUS             | 1.68 | 2.67  | 0.85  | 11.94 |  |
| LDVO             | 7.23 | 5.88  | 15.25 | 17.91 |  |
| тоvо             | 0.09 | 0.00  | 0.78  | 0.00  |  |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA   |       |      |      |  |
|------------------|-------|-------|------|------|--|
| Type of Accident | 08    | 26    | 13   | 31   |  |
| LDOR             | 1122  | 12290 | 67   | 472  |  |
| TOOR             | 1316  | 13830 | 104  | 516  |  |
| LDUS             | 12290 | 1122  | 472  | 67   |  |
| LDVO             | 12290 | 1122  | 472  | 67   |  |
| тоvо             | 13830 | 1316  | 516  | 104  |  |
| Total            | 40848 | 29680 | 1631 | 1226 |  |

### Spokane International Airport



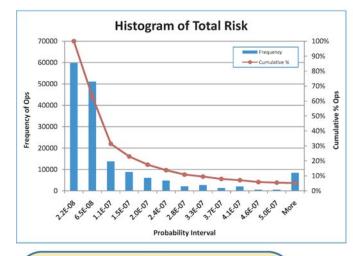
#### Risk of Accident - Summary of Results

**Overall Results** 

Summary Table

Avrg # of Years to Average Avrg # of Years to % Ops Above Critical Incident for Accident Probability **Critical Incident** TLS TLS LDOR 1.4E-07 >100 2.3 25 TOOR 1.7E-07 >100 25 2.2 >100 LDUS 1.0E-07 1.2 25 LDVO 2.7E-07 90 4.4 25 тоуо 1.3E-07 >100 3.8 25 Total 4.1E-07 30 5.5 12

**Risk Analysis** 


| Airport Annual Volume:        | 81,580  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Airport: Spokane International Airport

Date of Analysis: 12/13/2010

Analyst: **Regis Carvalho** 

Note: fields in yellow may be changed by user



#### Notes

- 1 Fields in orange may be directly changed in spreadsheet by user 2 - Results for overrun and undershoot consider all movements challenging each RSA adjacent to the ends of each runway
- 3 The total risk for the airport is per movement (landing and taking-
- off)
- 4 Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs
- 5 Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and
- the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include
- each movement challenging the RSA

#### Summary of Results by Runway

| Type of Accident | RSA      |          |          |          |  |  |
|------------------|----------|----------|----------|----------|--|--|
|                  | 03       | 21       | 07       | 25       |  |  |
| LDOR             | 9.91E-08 | 1.85E-07 | 2.30E-08 | 3.15E-08 |  |  |
| TOOR             | 1.04E-07 | 2.50E-07 | 4.86E-08 | 1.28E-07 |  |  |
| LDUS             | 1.46E-07 | 5.83E-08 | 4.84E-09 | 2.07E-08 |  |  |
| LDVO             | 3.38E-07 | 2.15E-07 | 1.76E-07 | 7.01E-08 |  |  |
| тоvо             | 1.69E-07 | 9.77E-08 | 4.49E-08 | 2.52E-08 |  |  |

#### Average # of Years Between Accidents

| Tuno of Accident | RSA  |      |      |      |  |
|------------------|------|------|------|------|--|
| Type of Accident | 03   | 21   | 07   | 25   |  |
| LDOR             | >100 | >100 | >100 | >100 |  |
| TOOR             | >100 | >100 | >100 | >100 |  |
| LDUS             | >100 | >100 | >100 | >100 |  |
| LDVO             | >100 | >100 | >100 | >100 |  |
| тоvо             | >100 | >100 | >100 | >100 |  |

#### Percent Events Above 1.0E-06

| Type of Accident | RSA  |      |      |      |  |
|------------------|------|------|------|------|--|
| Type of Accident | 03   | 21   | 07   | 25   |  |
| LDOR             | 1.35 | 3.42 | 0.00 | 0.00 |  |
| TOOR             | 0.57 | 3.99 | 0.00 | 0.00 |  |
| LDUS             | 2.07 | 0.36 | 0.00 | 0.00 |  |
| LDVO             | 6.77 | 2.24 | 0.00 | 0.00 |  |
| тоvо             | 5.36 | 2.39 | 0.00 | 0.00 |  |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Town of Academy  | RSA   |       |     |     |  |  |  |
|------------------|-------|-------|-----|-----|--|--|--|
| Type of Accident | 03    | 21    | 07  | 25  |  |  |  |
| LDOR             | 16682 | 15535 | 129 | 56  |  |  |  |
| TOOR             | 16770 | 15282 | 142 | 52  |  |  |  |
| LDUS             | 15535 | 16682 | 56  | 129 |  |  |  |
| LDVO             | 15535 | 16682 | 56  | 129 |  |  |  |
| тоvо             | 15282 | 16770 | 52  | 142 |  |  |  |
| Total            | 79804 | 80951 | 435 | 508 |  |  |  |

Risk in Events per Operation

## Lambert-St. Louis International Airport

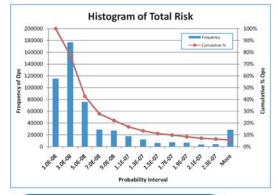


### Risk of Accident - Summary of Results

Summary Table

Risk Analysis

#### Summary of Results by Runway


#### Risk in Events per Operation

| Accident | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for<br>TLS |
|----------|------------------------|-----------------------------------------|--------------------|----------------------------------------------------|
| LDOR     | 1.9E-08                | >100                                    | 0.2                | 10                                                 |
| TOOR     | 8.0E-08                | >100                                    | 0.1                | 10                                                 |
| LDUS     | 3.6E-08                | >100                                    | 0.3                | 10                                                 |
| LDVO     | 1.7E-07                | 56                                      | 2.4                | 10                                                 |
| TOVO     | 5.1E-08                | >100                                    | 0.3                | 10                                                 |
| Total    | 1.8E-07                | 27                                      | 1.6                | 5                                                  |

| Airport Annual Volume:        | 209,094 |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

| Analyst:          | Regis Carvalho                          |
|-------------------|-----------------------------------------|
| Date of Analysis: | 12/13/2010                              |
| Airport:          | Lambert-St. Louis International Airport |
|                   |                                         |

Note: fields in yellow may be changed by user



| Type of Accident | RSA      |          |          |          |          |          |          |          |  |  |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
|                  | 12R      | 30L      | 12L      | 30R      | 11       | 29       | 06       | 24       |  |  |
| LDOR             | 1.33E-08 | 9.66E-09 | 1.94E-08 | 3.29E-08 | 1.24E-08 | 1.95E-08 | 1.34E-08 | 3.30E-09 |  |  |
| TOOR             | 8.66E-08 | 7.28E-08 | 5.12E-08 | 9.28E-08 | 6.71E-08 |          |          | 2.99E-08 |  |  |
| LDUS             | 2.58E-08 | 3.38E-08 | 3.44E-08 | 4.33E-08 | 2.88E-08 | 8.60E-08 | 1.05E-08 | 8.89E-08 |  |  |
| LDVO             | 1.36E-07 | 1.89E-07 | 1.43E-07 | 2.09E-07 | 1.70E-07 | 9.30E-08 | 6.05E-08 | 4.10E-07 |  |  |
| тоуо             | 3.75E-08 | 6.39E-08 | 3.66E-08 | 3.29E-08 |          | 6.98E-08 | 2.68E-08 |          |  |  |

Average # of Years Between Accidents

| Type of Accident | RSA  |      |      |      |      |      |      |      |
|------------------|------|------|------|------|------|------|------|------|
|                  | 12R  | 30L  | 12L  | 30R  | 11   | 29   | 06   | 24   |
| LDOR             | >100 | >100 | >100 | >100 | >100 | >100 | >100 |      |
| TOOR             | >100 | >100 | >100 | >100 | >100 |      |      |      |
| LDUS             | >100 | >100 | >100 | >100 | >100 | >100 |      | >100 |
| LDVO             | >100 | >100 | >100 | >100 | >100 | >100 |      | >100 |
| тоvо             | >100 | >100 | >100 | >100 |      | >100 |      |      |

Percent Events Above 1.0E-06

| Type of Accident | RSA  |      |      |      |      |      |      |      |
|------------------|------|------|------|------|------|------|------|------|
|                  | 12R  | 30L  | 12L  | 30R  | 11   | 29   | 06   | 24   |
| LDOR             | 0.12 | 0.06 | 0.18 | 0.30 | 0.06 | 0.06 | 0.00 | 0.00 |
| TOOR             | 0.14 | 0.02 | 0.00 | 0.17 | 0.09 |      |      | 0.00 |
| LDUS             | 0.09 | 0.36 | 0.13 | 0.39 | 0.12 | 0.90 | 0.00 | 0.00 |
| LDVO             | 1.94 | 2.95 | 1.84 | 3.06 | 2.30 | 1.25 | 0.00 | 1.47 |
| тоvо             | 0.02 | 0.56 | 0.02 | 0.09 |      | 0.56 | 0.00 |      |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA    |        |       |       |       |       |    |     |  |
|------------------|--------|--------|-------|-------|-------|-------|----|-----|--|
|                  | 12R    | 30L    | 12L   | 30R   | 11    | 29    | 06 | 24  |  |
| LDOR             | 18861  | 18073  | 29960 | 22733 | 3112  | 9083  | 68 | 0   |  |
| TOOR             | 37896  | 35459  | 1145  | 14822 | 12567 | 0     | 0  | 0   |  |
| LDUS             | 18073  | 18861  | 22733 | 29960 | 9083  | 3112  | 0  | 68  |  |
| LDVO             | 18073  | 18861  | 22733 | 29960 | 9083  | 3112  | 0  | 68  |  |
| тоvо             | 35459  | 37896  | 14822 | 1145  | 0     | 12567 | 0  | 0   |  |
| Total            | 128362 | 129150 | 91393 | 98620 | 33845 | 27874 | 68 | 136 |  |

Notes
1 - Fields in orange may be directly changed in spreadsheet by user
2 - Results for overrun and undershoot consider all movements
challenging each RSA adjacent to the ends of each runway
3 - The total risk for the airport is per movement (landing and takingoff)

off) 4 - Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs 5 - Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include each movement challenging the RSA off)

### Phoenix Deer Valley Airport

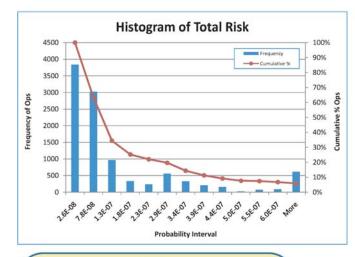


#### **Risk of Accident - Summary of Results**

**Overall Results** 

Summary Table

| Accident | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for<br>TLS |
|----------|------------------------|-----------------------------------------|--------------------|----------------------------------------------------|
| LDOR     | 1.2E-07                | >100                                    | 2.4                | 13                                                 |
| TOOR     | 4.8E-08                | >100                                    | 0.0                | 13                                                 |
| LDUS     | 5.4E-08                | >100                                    | 0.0                | 13                                                 |
| LDVO     | 1.8E-07                | 72                                      | 5.3                | 13                                                 |
| тоvо     | 3.5E-07                | 38                                      | 1.2                | 13                                                 |
| Total    | 3.7E-07                | 17                                      | 0.1                | 7                                                  |


**Risk Analysis** 

| Airport Annual Volume:        | 153,000 |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Phoenix Deer Valley Airport Airport: Date of Analysis: 12/13/2010 Hamid

Analyst:

Note: fields in yellow may be changed by user



#### Notes

- 1 Fields in orange may be directly changed in spreadsheet by user 2 - Results for overrun and undershoot consider all movements
- challenging each RSA adjacent to the ends of each runway
- 3 The total risk for the airport is per movement (landing and takingoff)
- 4 Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs
- 5 Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and
- the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include
- each movement challenging the RSA

#### Summary of Results by Runway

Risk in Events per Operation

|                  | RSA      |          |          |          |  |  |  |  |
|------------------|----------|----------|----------|----------|--|--|--|--|
| Type of Accident | 07R      | 25L      | 07L      | 25R      |  |  |  |  |
| LDOR             | 6.28E-08 | 1.29E-07 | 1.38E-07 | 1.61E-07 |  |  |  |  |
| TOOR             | 4.00E-08 | 4.92E-08 | 5.94E-08 | 4.44E-08 |  |  |  |  |
| LDUS             | 4.79E-08 | 7.01E-08 | 1.15E-07 | 9.21E-08 |  |  |  |  |
| LDVO             | 1.77E-07 | 2.77E-07 | 2.83E-08 | 4.39E-08 |  |  |  |  |
| тоvо             | 3.38E-07 | 3.16E-07 | 5.76E-07 | 4.40E-07 |  |  |  |  |

#### Average # of Years Between Accidents

| <b>T</b> (A ) (A ) | RSA  |      |      |      |  |  |  |
|--------------------|------|------|------|------|--|--|--|
| Type of Accident   | 07R  | 25L  | 07L  | 25R  |  |  |  |
| LDOR               | >100 | >100 | >100 | >100 |  |  |  |
| TOOR               | >100 | >100 | >100 | >100 |  |  |  |
| LDUS               | >100 | >100 | >100 | >100 |  |  |  |
| LDVO               | 83   | >100 | >100 | >100 |  |  |  |
| тоvо               | 52   | >100 | >100 | >100 |  |  |  |

#### Percent Events Above 1.0E-06

| Turn of Assidant | RSA  |       |      |      |  |  |  |
|------------------|------|-------|------|------|--|--|--|
| Type of Accident | 07R  | 25L   | 07L  | 25R  |  |  |  |
| LDOR             | 0.41 | 2.84  | 0.00 | 0.00 |  |  |  |
| TOOR             | 0.00 | 0.00  | 0.00 | 0.00 |  |  |  |
| LDUS             | 0.05 | 0.00  | 0.00 | 0.00 |  |  |  |
| LDVO             | 4.98 | 10.20 | 0.00 | 0.00 |  |  |  |
| тоvо             | 1.10 | 1.60  | 1.16 | 0.00 |  |  |  |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Turn of Audidant | RSA  |      |     |     |  |  |  |
|------------------|------|------|-----|-----|--|--|--|
| Type of Accident | 07R  | 25L  | 07L | 25R |  |  |  |
| LDOR             | 245  | 1828 | 15  | 93  |  |  |  |
| TOOR             | 312  | 1542 | 20  | 86  |  |  |  |
| LDUS             | 1828 | 245  | 93  | 15  |  |  |  |
| LDVO             | 1828 | 245  | 93  | 15  |  |  |  |
| тоvо             | 1542 | 312  | 86  | 20  |  |  |  |
| Total            | 5755 | 4172 | 307 | 229 |  |  |  |

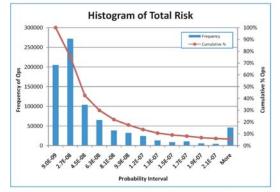
## Miami International Airport

### ACRP **Overall Results**

Risk of Accident - Summary of Results

Summary Table

Risk Analysis


#### Summary of Results by Runway

Risk in Events per Operation

| Accident | Average<br>Probability | Avrg # of Years to<br>Critical Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident for<br>TLS |
|----------|------------------------|-----------------------------------------|--------------------|----------------------------------------------------|
| LDOR     | 1.3E-08                | >100                                    | 0.0                | 5                                                  |
| TOOR     | 8.4E-08                | 63                                      | 0.0                | 5                                                  |
| LDUS     | 4.5E-08                | >100                                    | 0.2                | 5                                                  |
| LDVO     | 1.1E-07                | 46                                      | 0.9                | 5                                                  |
| TOVO     | 2.8E-08                | >100                                    | 0.0                | 5                                                  |
| Total    | 1.4E-07                | 19                                      | 0.5                | 3                                                  |

| Airport Annual Volume:        | 380,000 |
|-------------------------------|---------|
| Expected Traffic growth rate: | 0.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Airport: Miami International Airport Date of Analysis: 12/13/2010 Hamid Analyst: Note: fields in yellow may be changed by user



RSA Type of Accident 09 27 08R 26L 12 30 08L 26R LDOR 3.64E-09 6.13E-09 6.63E-09 6.44E-09 3.20E-08 2.80E-08 2.24E-08 1.12E-08 TOOR 7.36E-08 8.20E-08 5.23E-08 7,99E-08 4,75E-08 1,28E-07 3,52E-08 3,85E-08 LDUS 2.96E-08 3.90E-08 4.55E-08 6.42E-08 4.82E-08 4.98E-08 6.04E-08 8.24E-08 LDVO 5.25E-08 4.84E-08 1.46E-07 1.70E-07 1.69E-07 1.78E-07 1.56E-07 1.38E-07 тоvо 1.64E-08 1.11E-08 2.90E-08 4.58E-08 2.82E-08 1.14E-07 5.87E-08 7.97E-08

Average # of Years Between Accidents

| Type of Accident | RSA  |      |      |      |      |      |      |      |
|------------------|------|------|------|------|------|------|------|------|
| Type of Accident | 09   | 27   | 08R  | 26L  | 12   | 30   | 08L  | 26R  |
| LDOR             | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
| TOOR             | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
| LDUS             | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
| LDVO             | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
| тоvо             | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |

Percent Events Above 1.0E-06

| The standard     | RSA  |      |      |      |      |      |      |      |
|------------------|------|------|------|------|------|------|------|------|
| Type of Accident | 09   | 27   | 08R  | 26L  | 12   | 30   | 08L  | 26R  |
| LDOR             | 0.00 | 0.01 | 0.00 | 0.00 | 0.09 | 0.11 | 0.14 | 0.04 |
| TOOR             | 0.00 | 0.04 | 0.01 | 0.04 | 0.00 | 0.12 | 0.00 | 0.10 |
| LDUS             | 0.08 | 0.15 | 0.24 | 0.81 | 0.07 | 0.42 | 0.23 | 0.74 |
| LDVO             | 0.22 | 0.10 | 1.13 | 1.53 | 1.62 | 1.95 | 0.97 | 1.11 |
| тоvо             | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

#### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA    |        |        |        |       |       |       |       |
|------------------|--------|--------|--------|--------|-------|-------|-------|-------|
| Type of Accident | 09     | 27     | 08R    | 26L    | 12    | 30    | 08L   | 26R   |
| LDOR             | 2046   | 67065  | 2948   | 19482  | 24006 | 7449  | 9562  | 31656 |
| TOOR             | 24336  | 5609   | 13602  | 93307  | 156   | 27387 | 938   | 3056  |
| LDUS             | 67065  | 2046   | 19482  | 2948   | 7449  | 24006 | 31656 | 9562  |
| LDVO             | 67065  | 2046   | 19482  | 2948   | 7449  | 24006 | 31656 | 9562  |
| тоvо             | 5609   | 24336  | 93307  | 13602  | 27387 | 156   | 3056  | 938   |
| Total            | 166121 | 101102 | 148821 | 132287 | 66447 | 83004 | 76868 | 54774 |

Notes 1 - Fields in orange may be directly changed in spreadsheet by user 2 - Results for overrun and undershoot consider all movements challenging each RSA adjacent to the ends of each runway 3 - The total risk for the airport is per movement (landing and taking-off)

off) 4 - Each takeoff will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs 5 - Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include each movement challenging the RSA off)

## APPENDIX I

# Software User's Guide

# **ACRP 4-08**

Improved Models for Risk Assessment of

## **Runway Safety Areas**



# Runway Safety Area Risk Analysis (RSARA) Software User's Guide (Version 1.0.1)

Software developed by Applied Research Associates, Inc.

#### Disclaimer

While every precaution has been taken in the preparation of this analysis tool, the Airport Cooperative Research Program (ACRP) and Applied Research Associates, Inc. (ARA) assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of this software. In no event shall ACRP or ARA be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by the use of this software.

The user shall be aware that the Software should not be used without adequate knowledge of the contents of ACRP Report 50 (ACRP 4-08 Report when published); and the User Guide for the RSARA Software. The Software contains a tool developed to assist with risk analysis associated with runway safety areas and is not intended to be a substitute for the airport planner professional judgment.

Neither ACRP nor ARA shall be held liable for death or bodily injury, damage to property or any other direct, indirect or incidental damages or other loss sustained by third parties which may arise as a result of customer use of the RSARA software, nor for damage inflicted with respect to any property of the customer or any other loss sustained by said customer. Neither ACRP nor ARA shall be responsible for the accuracy or validity of the data entered and/or generated by the software.

# Runway Safety Area Risk Analysis - RSARA

### Contents

| Dis | claimerI-3                                 |
|-----|--------------------------------------------|
| 1.  | IntroductionI-5                            |
| 2.  | System RequirementsI-5                     |
| 3.  | Using the GuideI-6                         |
| 4.  | Software InstallationI-6                   |
| 5.  | Opening the ProgramI-7                     |
| 6.  | Creating a New ProjectI-7                  |
| 7.  | Entering DataI-9                           |
|     | Defining Airport ConditionsI-9             |
|     | Defining RSA Geometry and ObstaclesI-11    |
|     | Historical Operations Data (HOD)I-17       |
|     | Historical Weather Data (HWD)I-18          |
|     | Aircraft LibraryI-19                       |
| 8.  | Model ParametersI-20                       |
| 9.  | Running the AnalysisI-21                   |
|     | Output Missing DataI-24                    |
| 10. | Output ResultsI-26                         |
|     | Results for Individual RunwaysI-26         |
|     | Results for the AirportI-29                |
| 11. | Help and TroubleshootingI-36               |
| Att | achment A – Historical Operations DataI-37 |
| Att | achment B – Historical Weather DataI-41    |

# Runway Safety Area Risk Analysis (RSARA) User's Guide – Version 1.0

# 1. Introduction

This software is being developed as part of the Airport Cooperative Research Program (ACRP), Project ACRP 4-08 - Improved Models for Risk Assessment of Runway Safety Areas (RSA) and is intended to serve as a tool to help airport operators evaluate risk associated with their RSA conditions.

The risk associated with the following five types of aircraft accidents may be evaluated with this software:

- Landing overruns (LDOR)
- Takeoff overruns (TOOR)
- Landing undershoots (LDUS)
- Landing veer-offs (LDVO)
- Takeoff veer-offs (TOVO)

The user may perform two types of analysis with this software. In the first type of analysis, the user can evaluate the probability that the aircraft will exit the runway and stop beyond the limits of the RSA or, in case of undershoots, that the aircraft will touch down prior to the RSA. In the second type of analysis, the user may consider the obstacles inside or in the vicinity of the RSA to evaluate the risk of an accident with catastrophic consequences (substantial aircraft damage and/or multiple injuries/fatalities).

# 2. System Requirements

| Component              | Requirement                                                            |
|------------------------|------------------------------------------------------------------------|
| Computer and processor | 500 megahertz (MHz) processor or higher                                |
| Memory                 | 256 megabyte (MB) RAM or higher                                        |
| Hard disk              | 1.5 gigabyte (GB); a portion of this disk space will be freed after    |
|                        | installation if the original download package is removed from the hard |
|                        | drive                                                                  |
| Display                | 1024x768 or higher resolution monitor                                  |
| Operating system       | Microsoft Windows XP with Service Pack (SP) 2, Windows Server 2003     |
|                        | with SP1, or later operating system, except Windows Vista              |
| Other                  | RSARA utilizes modules from Microsoft Office Suite 2007, particularly  |
|                        | Microsoft Access to handle the databases and Microsoft Excel to handle |
|                        | data input and output results. Therefore, the user must have Microsoft |
|                        | Office 2007 with Excel and Access to run RSARA                         |

# 3. Using the Guide

To facilitate reading and comprehension of this user's guide, please note the following styles and conventions used throughout:

#### **Menu Selection**

Analysis/Run Analysis means click on Analysis on the main menu and then click on Run Analysis in the Analysis sub-menu.

#### **Main Window**

The main window contains the top title bar with the main menu name and the Minimize, Maximize, and Close buttons.

#### **Runway Safety Area**

When defining the RSA geometry in this model, the area is associated with **the arrival end of the runway**. For example, RSA 14R is the RSA adjacent to the arrival end of runway 14R.

#### **Movements Challenging the RSA**

In a given airport one movement (landing or takeoff) will challenge specific RSAs. Each landing will challenge the RSA located at the arrival end for landing undershoots, and the same landing movement will also challenge the RSA adjacent to the departure end for landing overrun. During the takeoffs, only the RSA at the departure end is challenged for overrun. During landings and takeoffs, both sides of the RSAs will be challenged for landing veer-offs and takeoff veer-offs, respectively.

#### Level of Risk Format

The program provides results in scientific format (e.g., 2.3E-07 or 0.00000023). These results can also be read as number of movements to occur one event. To read in this format, you have to take the inverse of the value in scientific format (e.g. 1/2.3E-07 = 4,347,826). In the example provided, a risk of 2.3E-07 is equivalent to one accident in 4,347,826 movements.

# 4. Software Installation

The installation of RSARA is the same process applied to other Windows programs. Go to the folder where you downloaded RSARA and double click on *setup.exe*. Then follow the on-screen instructions to install the program. It will add the program to your program group and place a shortcut on your desktop.

If you want to install a new version to replace the existing one, you first need to remove RSARA. To remove RSARA, select *Start/Control Panel* in your desktop window. Select *Add or Remove Programs*. When the program list is populated, select *RSARA* and click *Remove*.

# 5. Opening the Program

To open RSARA, double click on the shortcut to open the program and the *Disclaimer* screen. Please read the disclaimer and if you accept the conditions, click *I Accept*, otherwise the program will be closed. The main screen will open.



# 6. Creating a New Project

Click on *File/New Project* and the following screen will appear.

| 🔜 New Project     |                |  |
|-------------------|----------------|--|
|                   |                |  |
| Project ID:       | 5              |  |
|                   | li.            |  |
| Project Name:     | 1              |  |
| Airport Name:     |                |  |
| Airport Code:     |                |  |
| Airport Location: |                |  |
| Date File:        |                |  |
| File Name:        |                |  |
|                   |                |  |
|                   |                |  |
|                   | Create Project |  |
|                   |                |  |

Fill up the fields as shown in the example below and click *Create Project*. The project name cannot have spaces.

| 🔜 New Project     |                  |
|-------------------|------------------|
|                   |                  |
| Project ID:       | 5                |
| Project Name:     | Example_1        |
| Airport Name:     | Anywhere Airport |
| Airport Code:     | AWA              |
| Airport Location: | Anywhere County  |
| Date File:        |                  |
| File Name:        |                  |
|                   |                  |
|                   | Create Project   |
|                   |                  |

# 7. Entering Data

### **Defining Airport Conditions**

The following screen will appear when you click on the *Create Project* button or when select *Input Data/ Airport Characteristics* in the main menu.

| 📰 Airport Characteristics Input  |                                                |
|----------------------------------|------------------------------------------------|
| Analyst:                         | Project ID: 7                                  |
| Airport Characteristics          | Risk Criteria                                  |
| Elevation (ft):                  | Target Level of Safety: 1.0E-006 (E.g. 1.0E-6) |
| Annual Volume:                   | Airport Commuter Ops by Type of Aircraft?      |
| Expected Traffic Growth (%): 2.5 | Airport Hub (Yes or No):                       |
| Runway Configuration             |                                                |
| RWY_ID 🔺 ASDA                    | LDA Approach Category                          |
|                                  |                                                |
|                                  |                                                |
|                                  |                                                |
|                                  |                                                |
|                                  |                                                |
|                                  |                                                |
|                                  |                                                |
| Add RWY S                        | ave RWY Delete RWY                             |
| Project ID:                      |                                                |
| RWY ID:                          | Edit RSA Geometric<br>Layout                   |
| ASDA (R):                        | Layour                                         |
| LDA (it):                        |                                                |
| Category:                        |                                                |
|                                  | Done                                           |

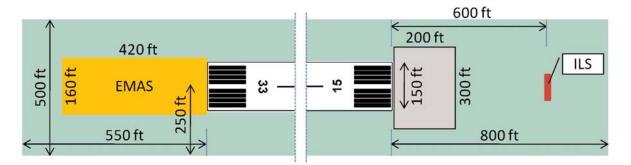
Enter the specific characteristics of the airport, including the runways characteristics and available distances. Each of the fields and commands are described in the following table.

| Field                                          | Description                                                                                                                                                                                                                                                                        | Example | Meaning                                                                                                                                                 |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Elevation (ft)                                 | The airport elevation, in feet                                                                                                                                                                                                                                                     | 1200    | The highest point on any of the airport's runways is 1,200 ft relative to sea level                                                                     |  |  |
| Expected Traffic<br>Growth (%)                 | The average expected annual<br>growth for aircraft<br>movements                                                                                                                                                                                                                    | 2.5     | The average annual growth for future years is expected to be 2.5%                                                                                       |  |  |
| Airport Hub (Yes<br>or No)                     | If the airport is a hub (large,<br>medium or small), enable the<br>check box                                                                                                                                                                                                       | V       | If the box is checked, the airport is a hub                                                                                                             |  |  |
| Target Level of<br>Safety (TLS)                | The acceptable level of is<br>expressed in the form of a<br>Target Levels of Safety (TLS)<br>or Criteria.                                                                                                                                                                          | 1.0E-07 | In this case, the acceptable level of risk<br>is 1 accident in 10,000,000 movements,<br>or 0.0000001 (or 1.0E-07) accident per<br>aircraft movement     |  |  |
| Assume<br>Commuter Ops by<br>Type of Aircraft? | The frequency models use<br>the type of flight<br>(commercial, cargo,<br>taxi/commuter or GA).<br>Sometimes the information<br>on commuter flights is not<br>available and if the check box<br>is marked, the type of aircraft<br>will dictate if the flight is<br>commuter or not | V       | The program will assume commuter<br>flights for every aircraft typically used<br>for commuter operations. For example,<br>ERJ-45 (Embraer jet airliner) |  |  |

For runway configuration, enter all the runways that will be evaluated. The analysis provides results for each runway and for all runways as the total risk for the airport. For this model, each runway pavement is treated as two runways. To enter the runway information, click on *Add RWY* to enable the runway fields. The information required is the following:

| Field     | Description                                                | Example | Meaning                                                                                                                                 |
|-----------|------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| RWY ID    | Enter the runway designation                               | 14R     | This is the designation for runway 14R                                                                                                  |
| ASDA (ft) | Accelerate-Stop Distance<br>Available for takeoff, in feet | 8300    | Runway 14R has an ASDA of 8,300 feet                                                                                                    |
| LDA (ft)  | Landing Distance Available, in feet                        | 7900    | Runway 14R has an LDA of 7,900 feet                                                                                                     |
| Category  | Type of instrument approach<br>available                   | CATI    | Runway 14R approach category is<br>precision level 1. Other possibilities are:<br>V (visual), NP (non-precision), CAT II<br>and CAT III |

Once the runway fields are filled, save the information by clicking *Save RWY*. You may continue adding the basic information for each runway before defining the RSA geometry for the runway. Changes to runway declared distances can be made directly in the table and the program will automatically save the changes.

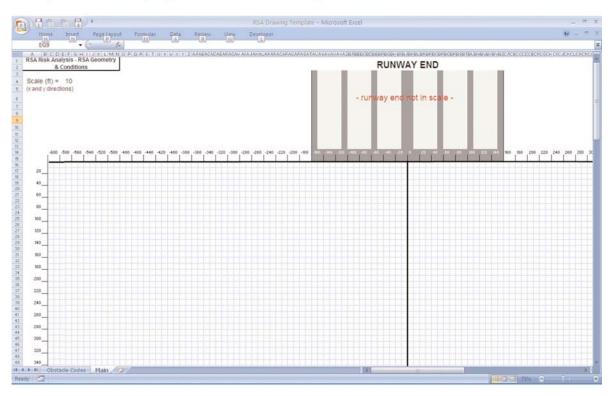

#### **Defining RSA Geometry and Obstacles**

Next, enter the RSA information, including the geometry and existing obstacles. To perform this step, click *Edit RSA Geometric Layout* and the following screen will appear.

| 😸 RSA Geometric La | iyout                                    |           |
|--------------------|------------------------------------------|-----------|
| Select RW          |                                          |           |
| Area Adjacent to   | o Arrival End (Overruns and Undershoots) | File Name |
| Overrun:           | New RSA Browse Open<br>Existing Layout   |           |
| Undershoot:        | New RSA Browse Dpen<br>Existing Layout   |           |
| Side OFA Distan    | ce (Veer-offs)                           |           |
| Right Side (ft):   |                                          |           |
| Left Side (ft):    |                                          |           |
|                    | Done                                     |           |

The dropdown list includes all runways entered. In the example above, runway 15 is selected. The screen contains two sets of buttons: one set to define RSA geometry for overruns and one set for undershoots. It is important to note that these two geometries may be different when the threshold is displaced. The runway that is selected defines the RSA to be characterized. The two fields for *Side OFA Distance* are used to define the **distance from the runway edge** (not from the runway centerline) to the closest obstacle.

There are two stages to define the safety area for each runway. The example shown in the following figure illustrates how to define the RSA dimensions.




The runway in the example is 150 ft wide, and the total width of the RSA is 500 ft. The RSA adjacent to the runway 15 arrival end extends to 800 ft, with part of the RSA (200 x 300 ft) being paved and there is a Localizer 600 ft from the runway end. The RSA adjacent to runway 33 arrival end extends to 550 ft and has an EMAS bed measuring 420 x 160 ft.

The first step is to define the RSA geometry next to the runway ends. This area helps protect aircraft overrunning runway 33 or undershooting runway 15. The designation **RSA 15** means the RSA section adjacent to the runway 15 arrival end.

To define this area, click on *New RSA* next to the label *Overrun* to define the RSA geometry. A dialog box prompting you to create a Microsoft Excel spreadsheet will appear, as shown below.

| Select Name for        | r New Excel File      | e Contain | ing RSA D | rawing for | Overn | run - 14R | ? 🔀    |
|------------------------|-----------------------|-----------|-----------|------------|-------|-----------|--------|
| Savejn:                | 🚞 RSA Drawing         | \$        |           | ~          | G     | ۰ 🗈 🕈     | 1      |
| My Recent<br>Documents |                       |           |           |            |       |           |        |
| Desktop                |                       |           |           |            |       |           |        |
| My Documents           |                       |           |           |            |       |           |        |
| My Computer            |                       |           |           |            |       |           |        |
|                        | File <u>n</u> ame:    | I         |           |            |       | ~         | Save   |
| My Network             | Save as <u>type</u> : | xls files |           |            |       | ~         | Cancel |

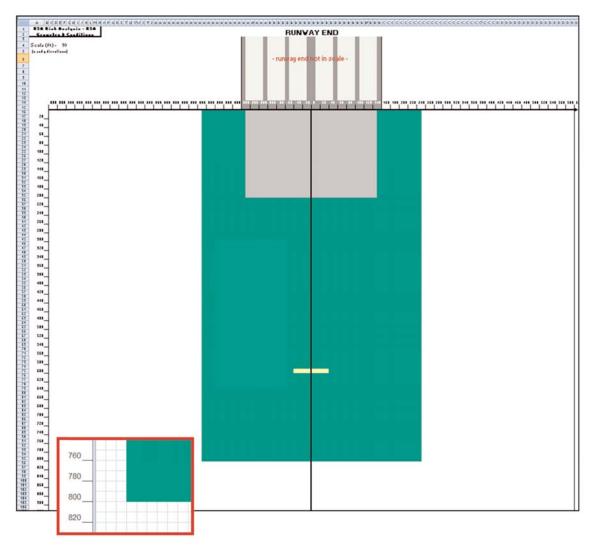


It is recommended that you name the file for the RSA 15 overrun (e.g., RSA 15 OR). Click *Save* and the Excel spreadsheet will open, as shown in the following screen.

Initially, the spreadsheet contains an "empty" RSA. The template has two folders: *Main* and *Obstacle Codes*. The *Main* folder is where you will define the RSA geometry and obstacles. The second folder, *Obstacle Codes*, is where you may obtain information on codes to define the areas and obstacles, and contains three tables, as shown below.

# Codes for RSA Surface

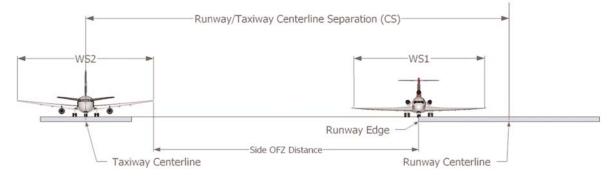
| Type of Area     | Code |
|------------------|------|
| Grass            | n    |
| Soil             | n    |
| Unpaved area     | n    |
| Paved            | р    |
| Asphalt          | р    |
| Concrete         | р    |
| EMAS             | е    |
| Cement stablized | p ,  |


| Obstacle Categories | Max Speed |
|---------------------|-----------|
| Category 1          | nil       |
| Category 2          | 5 knots   |
| Category 3          | 20 knots  |
| Category 4          | 40 knots  |

# **Codes for Obstacles**

| Type of Obstacle            | Code    |
|-----------------------------|---------|
| Concrete buildings          | 1       |
| Concrete walls              | 1       |
| Cliffs                      | 1       |
| Large holes                 | 1       |
| Body of water (undershoot)  | 1       |
| Stockpiles                  | 1       |
| Highways                    | 1       |
| Flammable material pipeline | 1       |
| Gas station                 | 1       |
| Body of water (overrun)     | 2       |
| Brick wall                  | 2       |
| Non frangible blast fences  | 2       |
| Large ditches               | 2       |
| Small ditches               | 3       |
| Fences                      | 3       |
| Irregular terrain           | 3       |
| Small depressions           | 3       |
| Large frangible structures  | 4       |
| Localizer                   | 4       |
| ALS                         | 4       |
| Frangible blast fences      | 4       |
| Non prepared areas          | 4       |
| Lights                      | no code |
| Signs (frangible)           | no code |

The runway end is represented at the top of the spreadsheet. Please note the runway section shown is only a representation to facilitate locating its position and is not on the same scale as the RSA. On the top left (line 4), you may select an appropriate scale for representation of each cell; the runway width will not match the coordinates used to define the RSA geometry. In this case, the scale selected was 10 ft, meaning that each cell in the RSA is a 10 x 10 ft square in the terrain.


To define the area, select the appropriate code for the type of Area/Obstacle from the tables shown above and available in folder *Obstacle Codes*. In this case part of the area is paved and the remaining is grassy. For grass, you should use the letter "n". To define the grassy areas, insert an "n" (non-paved) in each cell that comprises the grassy area. In this example, the width of the RSA is 500 ft and the RSA is centered on the runway, so you should mark 250 ft to the right of the runway centerline and 250 ft to the left, and 800 ft from the runway end (please note it is easier to copy and paste the cells, rather than manually entering one "n" at a time). When an "n" is entered in a cell, the cell will change color (in this case, to green). After marking the grassy area, the same process is used to define the paved area using the letter "p". Finally, you should define the ILS location. The same process is used to enter an obstacle. For this example, a 90-ft long Localizer is located 600 ft from the runway end, the code to enter for a Localizer is "4," and this number should be entered in the cells located 600 ft from the runway end for a total length of 80 ft, centered at the extended runway centerline. The total length should be 40 ft to the right and 40 ft to the left of the centerline.



Use the Excel menu to save the RSA geometry for overruns on RSA 15, and close the spreadsheet. The action will take you back to the *RSA Geometric Layout* screen. Define the RSA 15 geometry for undershoot using the same process; in many cases the RSA area for undershoot will be the same for overrun. It is important to note that depending on the runway declared distances (includes displaced thresholds), the RSA for overrun may be different from the RSA for undershoot in the same runway end.

The next step is to define the *Side Obstacle Free Area (OFA) Distance*. This distance is the clearance from the runway edge to the nearest obstacle, fixed or movable. In some cases, the object may be a

hangar or another fixed object; however, in most cases it will be an aircraft located in a parallel taxiway. In this latter case, the Side OFA Distance will be the distance between the runway edge and the wingtip of the taxiing aircraft, as shown below. The location of the wingtip is associated with the Aircraft Design Group (ADG), or it may be the aircraft with the largest wingspan operating at the airport.



In the figure, WS2 is the wingspan of the taxing aircraft and WS1 is the wingspan of the aircraft in the runway. The *Side OFA Distance* can be calculated as follows:

$$SOFAD = CS-RW/2-WS2/2$$

Where:

- SOFAD is the Side OFA Distance
- CS is the runway/taxiway centerline separation
- RW is the runway width
- WS2 is the wingspan of the aircraft in the taxiway, usually characterized by the largest wingspan of the Aircraft Design Group of the airfield

Because of the symmetry, the Side OFA Distance to the right and to the left is the same. In the example, the width of the OFA is 500 ft and the Side OFA Distance is simply half the OFA width minus half of the runway width, or 250 ft minus 75 ft, equal to 175 ft. The RSARA software takes into consideration the wingspan of the aircraft landing or taking off and uses the actual wingtip clearance to estimate the probability of collision when large lateral deviations take place during the veer-offs.

| 📰 RSA Geometric L   | ayout                                    |                |
|---------------------|------------------------------------------|----------------|
| Select RV           | vyć 15 💌                                 |                |
| Area Adjacent t     | o Arrival End (Overruns and Undershoots) | File Name      |
| Overrun:            | New RSA Browse Open<br>Existing Layout   | RSA 15-OR.xlsx |
| Undershoot:         | New RSA Browse Open<br>Existing Layout   | RSA 15-US.xlsx |
| Side OFA Distar     | nce (Veer-offs)                          |                |
| Right Side (ft): 17 | 75                                       |                |
| Left Side (ft): 17  | 75                                       |                |
|                     | Done                                     |                |

When the RSA characteristics are entered for each runway available in the drop down list, you may click *Done* to exit the screen, taking you back to the *Airport Characteristics Input* screen. The program will automatically save the information entered.

## **Historical Operations Data (HOD)**

The next step is to enter HOD. Ideally historical data for the airport should be collected for one year. The information is placed in the template spreadsheet for this type of data. The columns, the field, and the format to save this data in the spreadsheet are presented in Attachment A to this guide. To enter the historical data into the analysis, click *Analysis/Input Data/Historical Operations Data* to open the screen to load the file.

Please note that the HOD can be edited using Microsoft Excel, however you **should not change the name of column headers or the tab name that contains the data**. RSARA uses the labels to identify the type of data to load into the program.

For towered airports it is possible to retrieve the records for operational data from the tower log or from the FAA's Aeronautical Information Management Lab. In some cases, the records are available however the runway used is not identified. For airports in the Aviation System Performance Metrics (ASPM), it is possible to identify the runway configuration used in an hourly basis. The information is available online at *aspm.faa.gov*.

For non-towered airports, a sample of operations during one month may be repeated over the one-year period of records for the analysis. The information will be matched to the weather data retrieved for the airport to create a representative sample for analysis.

| HOD ID           | DATE&TIME           | RUNWAY                                                  | Arr/Dep                                   | FAA_Code | FLIGHT_Catego |
|------------------|---------------------|---------------------------------------------------------|-------------------------------------------|----------|---------------|
| 1                | 1/10/2006 12:03 AM  | 15                                                      | A                                         | A319     | AIR           |
| 2                | 1/10/2006 12:14 AM  | 33                                                      | A                                         | MD83     | AIR           |
| 3                | 1/10/2006 12:17 AM  | 33                                                      | A                                         | B752     | AIR           |
| 4                | 1/10/2006 12:19 AM  | 15                                                      | A                                         | A320     | AIR           |
| 5                | 1/10/2006 12:21 AM  | 33                                                      | A                                         | B752     | AIR           |
| 6                | 1/10/2006 12:26 AM  | 33                                                      | D                                         | A319     | AIR           |
| 7                | 1/10/2006 12:27 AM  | 33                                                      | D                                         | B744     | AIR           |
| •                | 1710 2200¢ 12-20 AM | 22                                                      | n                                         | D744     | AID           |
| tal number of re |                     | Create New<br>Input File<br>Edit Existing<br>Input File | Import Data from<br>Existing File<br>Done |          |               |

The screen allows the user to create, edit, import, or view the HOD required to run the analysis.

## Historical Weather Data (HWD)

The file containing the HWD data will be loaded using a similar process to that used to load the HOD. The period for the weather data must match the period of operational data. The RSARA program will match the operational and weather data to characterize the actual weather conditions for each operation. The preparation of weather data is described in Attachment B to this guide.

It is important to note that the HWD can be edited using Microsoft Excel, however you **should not change the name of column headers or the tab name that contains the data**. RSARA uses the labels to identify the type of data to load into the program. The screen to enter the file containing weather data is the following.

#### 🚟 Input Weather Data Existing Weather Data in the Database Wind Wind Speed ^ Date&Time Visibility (SM) Air Temp (\*F) Ceiling (ft) Direction\_deg (knots) 1/1/2006 1:00 AM 10 120 10 52 10000 1/1/2006 2:00 AM 140 7 48 10000 10 3 1/1/2006 3:00 AM 10 130 48 10000 1/1/2006 4:00 AM 10 140 3 48 10000 5 1/1/2006 5:00 AM 10 140 50 10000 1/1/2006 6:00 AM 10 12 52 10000 120 1/1/2006 7:00 AM 10 140 11 52 10000 Y < > Total number of records: 8639 Create New Import Data from Input File **Existing File** Edit Existing Done Input File

The screen allows the user to create, edit, import, or view the HWD required to run the analysis. The spreadsheet may be opened using RSARA or directly in Excel and saving without changing the file name.

## **Aircraft Library**

The software contains a basic database of aircraft that may be updated to run the analysis. Click *Software Parameters/Aircraft Database* to access the database. The following screen will appear.

| Aircraft           | Database                    |                  |                              |               |
|--------------------|-----------------------------|------------------|------------------------------|---------------|
| 4 4 1              | of 253                      | > N   🕂 🗙        | _                            |               |
| 🗌 Che              | eck to Allo <del>w</del> Up | date/Add Record. |                              |               |
|                    | Aircraft ID                 | Model            | FAA Code                     | Manufacturer  |
| •                  | 1                           | Fokker 100       | F100                         | Fokker        |
|                    | 2                           | Airbus 300-600   | A306                         | Airbus        |
|                    | 3                           | Airbus 310       | A310                         | Airbus        |
|                    | 4                           | Airbus 318       | A318                         | Airbus        |
| <                  |                             |                  |                              |               |
| IATA Co<br>Manufac |                             |                  | )ist Btw Gears Cent          | er (ft): 16.1 |
| Manurao<br>Type co |                             |                  | .ength (ft):                 | 27.9          |
| MTOW               |                             |                  | leight(ft):<br>.anding Gear: | D             |
|                    | f Dist (ft): 5,577          |                  | /2 (knots):                  | 135           |
| Landing            |                             |                  | Approach Speed (kr           | nots): 130    |
| Commute            | er:                         | \$               | Geating:                     | 100           |
|                    | U                           | pdate            | Do                           | one           |

You may edit, update, or add records by clicking the check box on the top left of the screen. By checking that box the fields will be enabled for editing. It is important to note that RSARA identifies the type of aircraft in the historical information by the aircraft FAA Code shown in the third column.

# 8. Model Parameters

The user may view the frequency and location models used in the program by clicking *Software Parameters/Model Parameters*. The model parameters cannot be edited. The models incorporated to the software were those developed under project ACRP 4-08 – Improved Models for Risk Assessment of Runway Safety Areas (RSA). They will be available in the corresponding report, when published by the TRB.

| Incident Type     | Constant               | User_Class_F                                                                  | User_Class_G               | User_Class_TC                   |
|-------------------|------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------|
| LDVO              | -13.088                | 0.000                                                                         | 1.682                      | 0.000                           |
| TOOR              | -14.293                | 1.266                                                                         | 0.000                      | 0.000                           |
| TOVO              | -15.612                | 0.000                                                                         | 2.094                      | 0.000                           |
| LDOR              | -15.200                | 0.000                                                                         | 1.539                      | -0.498                          |
| LDUS              | -15.378                | 1.693                                                                         | 1.288                      | 0.017                           |
| () iii )          |                        |                                                                               |                            | >                               |
| are independent v | ariables (e.g. ceiling | y (0-100%) of an incid<br>, visibility, crosswind, j<br>n Attachment C of the | precipitation, aircraft ty | ertain operational condi<br>pe) |

This screen contains two folders. The first shows the frequency models for landing overruns (LDUR), landing undershoots (LDUS), takeoff overruns (TOOR), landing veer-offs (LDVO), and takeoff veer-offs (TOVO). The second folder presents the location models for longitudinal and transverse distances relative to the runway axis for the same types of events.

# 9. Running the Analysis

The analysis menu has three submenus:

- Check Analysis Status
- Run Analysis
- Output Missing Data

The user may select *Analysis/Check Project Status* to check the status of calculations on one or more runways.

| 🔚 Check Analysis                                               | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |               |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--|
| Project ID:<br>Project Name:<br>Airport Name:<br>Airport Code: | 4<br>Example<br>Anywhere Airport<br>AWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               |  |
|                                                                | Calculations W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /ere Performed For № | farked Boxes: |  |
| BWY                                                            | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location             | Risk          |  |
| 15                                                             | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |               |  |
| 33                                                             | <ul> <li>Image: A start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of</li></ul> |                      |               |  |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Done                 |               |  |

In the example presented, only the frequency probabilities for runways 15 and 33 were estimated.

To run the desired analysis, select Analysis/Run Analysis, and the following screen will appear.

| 🔚 Run Analysis                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probability of Incident-Frequency     Run All Runways     Run Individual Runway     Select RwY to Perform Calculations: 15     Check to rerun only operations previously missing aircraft or weather data.     Probability of Incident-Frequency | Probability of Incident Location and Total Probability <ul> <li>Run All Runways</li> <li>Run Individual Runway</li> </ul> Select RWY to Perform Calculations:         15           Probability of Incident Off<br>RSA           Risk Analysis (If Obstacles<br>Are Present)           Probability of Incident Off |
| Status:                                                                                                                                                                                                                                          | Status:                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |

You may run the analysis for individual runways or for all runways entered in the project. The selection is made on the top left of the screen, and if *Run Individual Runway* is selected, the list of runways is enabled for user selection.

After selecting *Run Individual Runway* or *Run All Runways*, the user must select one of the following three buttons to run the analysis:

- Probability of Incident-Frequency
- Probability of Incident Off RSA
- Risk Analysis

The analysis is conducted in two steps. First, click on *Probability of Incident-Frequency*. The program will only estimate the probability of individual incidents occurring. In this case, only the frequency model will be used to calculate the probability of overruns, undershoots, and veer-offs, no matter where the aircraft stopped or touched down. The program will store the results internally, and this step will allow the user to identify missing data on the historical records. **Running the** *Probability of Incident-Frequency* **is required before running the next steps**.

This step saves time when running the second step – when the actual RSA dimensions and obstacles will have an influence on the risk estimates. If you want to evaluate different RSA conditions, it will not be necessary to run the frequency model again.

The *Probability of Incident Off the RSA* button is used to estimate the probability that aircraft will overrun, veer-off, or undershoot the runway and that it will stop or touch down outside the limits of the existing or planned RSA. This analysis will not consider the risk of severe consequences, only the risk that the aircraft will stop outside the bounds of the RSA. Again, this analysis can be performed only after the user has run the *Probability of Incident*.

The *Risk Analysis* button allows the user to consider the interaction between the aircraft and the obstacles present within the RSA or its vicinity. The analysis will consider the type, location and size of the obstacles and will assume catastrophic consequences for cases when the aircraft is still moving when reaching the obstacle location. The speed of the aircraft to cause such serious consequences depends on the category of the obstacle. The end of the RSA for risk analysis is always assumed to be an obstacle of category 1 (maximum collision speed is nil, see below). When clicking the *Risk Analysis* button, please wait a few minutes before the progress bar is shown. The program is performing internal calculations before the progress bar is activated.

The approach to estimate the risk of catastrophic consequences uses the following assumptions:

- Aircraft overrunning, undershooting, or veering-off the runway will strike the obstacle in paths parallel to the runway direction. This assumption is necessary to define the area of influence of the obstacle.
- Four categories of obstacles are defined as a function of the maximum speed with which an aircraft may collide with an obstacle that produces small chances of causing hull loss and injuries to the occupants.
  - a. Category 1: Maximum speed is nil (e.g., cliff at the RSA border, body of water for undershoots)
  - b. Category 2: Maximum speed is 5 knots (e.g., brick buildings, non-frangible blast fences)
  - c. Category 3: Maximum speed is 20 knots (e.g., small ditches, fences)
  - d. Category 4: Maximum speed is 40 knots (e.g. large frangible at ground level structures such as Localizers and approach lighting systems (ALS))
- 3. Severe damage and injuries are expected only if the aircraft collides within the central third of the wingspan and with a speed higher than the maximum for that obstacle category.
- 4. The lateral distribution is random and does not depend on the presence of obstacles. This is a conservative assumption because there are events when the pilot will avoid the obstacles if he has some directional control of the aircraft. The accident/incident database contains a number of cases in which the pilot avoided a Localizer or some ALS structures in the RSA.

### **Output Missing Data**

When running the analysis for a given runway for the first time, the program checks for records missing either aircraft or weather information. The analysis cannot be completed for specific records that have missing information. One common occurrence is a record for an aircraft that is not listed in the aircraft database. In most cases, the Federal Aviation Administration (FAA) code for the aircraft is a variation of the normal code; it is an aircraft that isn't widely used and is not in the default aircraft database; or it is

an aircraft with maximum takeoff weight lower than 5,600 lbs. If missing records were identified during the run, the following screen will appear.

| Analysis | Information                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------|
| <b>(</b> | Aircraft and/or weather data could not be found for 14 operations. Visualize missing aircraft/weather data? |
|          | <u>Y</u> es <u>N</u> o                                                                                      |

If the user selects *Yes*, an Excel spreadsheet will appear as shown below, showing the records with missing information. These records will be stored during the analysis and can be retrieved by the user at any time by clicking *Analysis/Output Missing Data*.

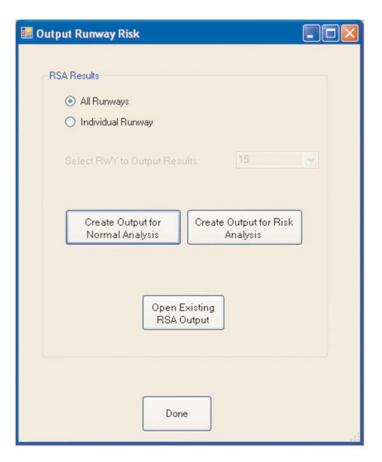
| 0  | Home        | Insert      | Page Layout | Formula    |             | Review     | View Devel   | loper 🕜   |     | ×  |
|----|-------------|-------------|-------------|------------|-------------|------------|--------------|-----------|-----|----|
|    | H<br>A1     | N           | () P        | fx Aircr   | aft(s) miss | ing inform | ation in the | database. |     | *  |
|    | А           | В           | С           | D          | E           | F          | G            | Н         | 1   | E. |
| 1  | Aircraft(s) | missing in  | formation   | in the dat | abase.      |            |              |           |     | Π  |
| 2  | A109        |             |             |            |             |            |              |           |     |    |
| 3  | AC90        |             |             |            |             |            |              |           |     |    |
| 4  | C21A        |             |             |            |             |            |              |           |     |    |
| 5  | C601        |             |             |            |             |            |              |           |     | 1  |
| 6  | CL60        |             |             |            |             |            |              |           |     |    |
| 7  | DA90        |             |             |            |             |            |              |           |     |    |
| 8  | G2          |             |             |            |             |            |              |           |     |    |
| 9  | LJ40        |             |             |            |             |            |              |           |     |    |
| 10 | MU30        |             |             |            |             |            |              |           |     |    |
| 11 | PRM1        |             |             |            |             |            |              |           |     |    |
| 12 |             |             |             |            |             |            |              |           |     |    |
| 13 |             |             |             |            |             |            |              |           |     |    |
| 14 | Mis Mis     | sing Aircra | aft Missin  | g Weather  | 12/         | 1          | i in i       |           | ▶ 1 |    |

The user may ignore the list of records with missing data if the list contains only a few records; however it is possible to fix the problems with such records and rerun the analysis for all runways or individual runways with only the missing records.

There are two ways to correct missing data for aircraft. If the information for the aircraft is not in the aircraft database, the user should click *Software Parameters/Aircraft Database* and add the aircraft information to the database. If the information is available and the code does not match the FAA code in

the aircraft database, the user may simply edit the code by clicking *Analysis/Input Data/Historical Operations Data* and then *Edit Existing Input File*. Information on FAA codes for aircraft can be obtained from FAA Order JO 7110.65T (Feb 2010). All the mismatching codes should be replaced with the code matching the code available in the aircraft database.

If weather data is missing, the user may correct the file by clicking *Analysis/Input Data/Weather Database* and then *Edit Existing Input File* to make the necessary corrections.


After the corrections are made, the user may run the analysis only for the missing records. This will save time, particularly for the analysis of larger airports with many historical records. To rerun the analysis for missing records, the user must check the option *Check to rerun fixed missing data* in the *Run Analysis* screen. The estimates after rerunning the analysis will consider both the previous and the new analysis of records recovered.

# **10. Output Results**

When the analyses are completed, the user may see the results using the *Output* option of the main menu. There are two types of results: individual runways or the consolidated results for the whole airport. Within each of these options, the user can view the results for risk of events taking place outside the RSA or view the analysis output for the risk of catastrophic accidents.

### **Results for Runways**

To see the results for all or individual runways, select *Output/Runway* and the following screen will appear.



The first step is to create the output and there are two alternatives, depending on the type of analysis that the user ran in the *Analysis* option of the main menu. The results are stored internally in the program and the need to create the output in this step is because the data will be transferred to an Excel spreadsheet to facilitate visualization of results.

Since this screen is for runways, the user may select one specific runway to output results, or to see the results for all the runways. In the latter case, the number of spreadsheets created will be the same as the number of runways analyzed.

The first option is to create the output for the analysis of RSA dimensions. To perform this procedure click *Create Output for Analysis of RSA Geometry* and a progress bar will open and show when the output is completed. Next, click *Open Results*, and an Excel spreadsheet will open as shown below. Please note that the *Open Results* button will only open the last output created.

| Average<br>Incident         Avrg # of Years<br>to Incident/<br>Accident         Avrg # of Years to<br>Critical Incident<br>Above TLS         Solution           LDOR         1.0E-09         >100         0.0         50           TOOR         6.3E-08         >100         0.0         52           Total         3.1E-08         >100         0.0         52           Total         3.1E-08         >100         0.0         400           Veer-Off Risk for Movements on RWY         15         100         0.0         45           Total         9.9E-08         >100         1.7         30         100           Notes         1.0         1.7         30         100         1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 036             | • (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fx                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Review View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |          |           |         |         |             | The second second |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|----------|-----------|---------|---------|-------------|-------------------|
| RSA Risk Analysis         Normal Analysis         Histogram of Risk         Airport Annual Volume:       S0,000         Expected Traffic growth rate:       2,00%         Target Level of Safety (TLS):       1.00         Incident Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Aver | В               | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н     | 1          | 1        | K         | L       | M       | N           | 0                 |
| RSA Risk Analysis         Normal Analysis         Histogram of Risk         Airport Annual Volume:       Loopsing S0,000         Expected Traffic growth rate:       Coopsing S0,000         Target Level of Safety (TLS):       Loopsing RSA       Histogram of Risk         Risk for Movements Challenging RSA       15         Incident Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Average Avera                                                                                 | umma            | ry of Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          |           |         |         |             |                   |
| Normal Analysis         Histogram of Risk         Airport Annual Volume:       50,000         Expected Traffic growth rate:       2,00%         Target Level of Safety (TLS):       1,0E-06         Risk for Movements Challenging RSA       15         Incident       Average       to Incident/       Movements       Critical Incident         Above TLS       for TLS       for TLS         IDOR       1.0E-09       >100       0.0       52         Youral       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15       Image To the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of the terr of terr of the terr of the terr of the terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of terr of                                                                                                                                                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          |           |         |         |             |                   |
| Airport Annual Volume:       50,000         Expected Traffic growth rate:       2.00%         Target Level of Safety (TLS):       1.0E-06         Risk for Movements Challenging RSA       15         Incident       Average       Average       Yes         Probability       Aure # of Years       %       Average for TLS         Incident       Average       Average       Yes       %       Average       Yes         Incident       Average       Average       Yes       %       Average       % <t< td=""><td></td><td></td><td></td><td></td><td>Normal Analysis</td><td></td><td></td><td>Histor</td><td>aram of</td><td>Risk</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            | Histor   | aram of   | Risk    |         |             |                   |
| Expected Traffic growth rate:       2.00%         Target Level of Safety (TLS):       1.0E-06         Risk for Movements Challenging RSA       15         Incident       Avrg # of Years         Probability       to Incident/         Above TLS       for TLS         IDOR       1.0E-09         Year-Off Risk for Movements on RWY       15         Incide nt       3.1E-08       >100       0.0         Yeer-Off Risk for Movements on RWY       15         Incide nt       9.9E-08       >100       0.0         Notes       1-Fields in orange may be directly changed in spreadsheet by user       2-Results for overrun and undershoot consider all movements challenging the RSA       3- Results for overrun and undershoot consider all movements operating on the specific runway       4- Histogram only contains data for overruns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rport An        | nual Volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | 50.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |          |           | , non   |         |             |                   |
| Target Level of Safety (TLS):       1.0E-06         Risk for Movements Challenging RSA       15         Incident       Avrg # of Years       %       Avrg # of Years to<br>Critical Incident<br>for TLS       Movements       for TLS         Incident       Avrg # of Years       %       Avrg # of Years to<br>Critical Incident       for TLS         IDOR       6.3E-08       >100       0.0       50         Total       3.1E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       40         Veer-Off Risk for Movements on RWY       15       DVO       1.7       30         Notes       1 - Fields in orange may be directly changed in spreadsheet by user       2.       Results for overrun and undershoot consider all movements challenging the RSA       3.       Results for overrun and undershoot consider all movements operating on the specific runway       A- Histogram only contains data for overruns and undershoots on the       Probability interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          |           |         |         |             |                   |
| Average<br>Probability       Avrg # of Years to<br>to Incident/<br>Accident       Avrg # of Years to<br>Critical Incident<br>Above TLS       Avrg # of Years to<br>Critical Incident<br>for TLS         LDOR       1.0E-09       >100       0.0       50         TOOR       6.3E-08       >100       0.0       50         Total       3.1E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       40         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       3.8       52         Total       9.9E-08       >100       1.7       30         Notes       1- Fields in orange may be directly changed in spreadsheet by user       2.Results for overun and undershoot consider all movements<br>challenging the RSA       3- Results for overer-off consider the movements operating on the<br>specific runway       4- Histogram only contains data for overuns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                                 | 1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | RS         | A15 -    | otal      | OR and  | US      |             |                   |
| Average<br>Probability       Avrg # of Years to<br>to Incident/<br>Accident       Avrg # of Years to<br>Critical Incident<br>Above TLS       Avrg # of Years to<br>Critical Incident<br>for TLS         LDOR       1.0E-09       >100       0.0       50         TOOR       6.3E-08       >100       0.0       50         Total       3.1E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       40         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       3.8       52         Total       9.9E-08       >100       1.7       30         Notes       1- Fields in orange may be directly changed in spreadsheet by user       2.Results for overun and undershoot consider all movements<br>challenging the RSA       3- Results for overer-off consider the movements operating on the<br>specific runway       4- Histogram only contains data for overuns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ch for Mr       | overente Chall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anging BEA                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600   |            |          |           |         |         |             | 100%              |
| Incident       Average<br>Probability       to Incident/<br>Accident       Movements<br>Above TLS       Critical Incident<br>for TLS         LDOR       1.0E-09       >100       0.0       50         TOOR       6.3E-08       >100       0.0       400         UDUS       2.6E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       3.8       52         Total       9.9E-08       >100       1.7       30         Notes       1- Fields in orange may be directly changed in spreadsheet by user       2. Results for overnum and undershoot consider all movements<br>challenging the RSA       3. Results for over-off consider the movements operating on the<br>specific runway       4. Histogram only contains data for overruns and undershoots on the       Probability interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JA IOI WIL      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Avre # of Years to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000   |            |          |           |         |         |             | 100%              |
| Probability       Accident       Above TLS       for TLS         LDOR       1.0E-09       >100       0.0       50         TOOR       6.3E-08       >100       0.0       47         LDUS       2.6E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes       Notes       1- Fields in orange may be directly changed in spreadsheet by user       2- Results for overrun ad undershoot consider all movements challenging the RSA       3- Results for over-off consider the movements operating on the specific runway       4- Histogram only contains data for overruns and undershoots on the       Probability interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ncident         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1          |          |           |         |         |             | 90%               |
| LDOR       1.0E-09       >100       0.0       50         TOOR       6.3E-08       >100       0.0       47         LDUS       2.6E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15       0       0       400         LDV0       1.7E-07       >100       3.8       52         Total       9.9E-08       >100       1.7       30         Notes         1<-Fleids in orange may be directly changed in spreadsheet by user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 500   | 1          |          |           |         |         | without the | 80%               |
| 100R       0.3:2-08       >100       0.0       47         LDUS       2.6E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes         1       Fields in orange may be directly changed in spreadsheet by user       200       100       100         100       5.2       5.2       100       1.7       30         Notes         1       Fields in orange may be directly changed in spreadsheet by user       2.7       8.4       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5       9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OOR             | 1.0E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >100                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |          |           |         |         |             | 0014              |
| LDUS       2.6E-08       >100       0.0       52         Total       3.1E-08       >100       0.0       22         Veer-Off Risk for Movements on RWY       15         LDV0       1.7E-07       >100       3.8       52         Total       9.9E-08       >100       1.7       30         Notes       1- Fields in orange may be directly changed in spreadsheet by user       2. Results for overrun and undershoot consider all movements challenging the RSA       3. Results for overrun and undershoot consider all movements operating on the specific runway       4. Histogram only contains data for overruns and undershoots on the       Probability interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OOR             | 6.3E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >100                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400   |            |          |           |         |         |             | 70%               |
| TOVO       4.0E-08       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes         1- Fields in orange may be directly changed in spreadsheet by user         2- Results for overrun and undershoot consider all movements         challenging the RSA         3- Results for veer-off consider the movements operating on the specific runway         4- Histogram only contains data for overruns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | US              | 2.6E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >100                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     |            |          |           |         |         |             | 60%               |
| TOVO       4.0E-08       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes         1- Fields in orange may be directly changed in spreadsheet by user         2- Results for overrun and undershoot consider all movements         challenging the RSA.         3- Results for veer-off consider the movements operating on the specific runway         4- Histogram only contains data for overruns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otal            | 3.1E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >100                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | yof   |            |          |           |         |         |             |                   |
| TOVO       4.0E-08       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes         1- Fields in orange may be directly changed in spreadsheet by user         2- Results for overrun and undershoot consider all movements         challenging the RSA.         3- Results for veer-off consider the movements operating on the specific runway         4- Histogram only contains data for overruns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or Off Pi       | ick for Mourmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | atr on PM/V                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300 - | X          |          |           |         |         |             | 50%<br>40%        |
| TOVO       4.0E-08       >100       0.0       45         Total       9.9E-08       >100       1.7       30         Notes         1- Fields in orange may be directly changed in spreadsheet by user         2- Results for overrun and undershoot consider all movements         challenging the RSA.         3- Results for veer-off consider the movements operating on the specific runway         4- Histogram only contains data for overruns and undershoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | abo I |            |          |           |         |         |             | 40%               |
| Total       9.9E-08       >100       1.7       30         Notes       1       Fields in orange may be directly changed in spreadsheet by user       1       100       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 - |            | 2        |           |         |         |             |                   |
| Notes<br>1 - Fields in orange may be directly changed in spreadsheet by user<br>2 - Results for overrun and undershoot consider all movements<br>challenging the RSA<br>3 - Results for over-off consider the movements operating on the<br>specific runway<br>4 - Histogram only contains data for overruns and undershoots on the<br>Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            | A        |           |         |         |             | 30%               |
| Notes<br>1 - Fields in orange may be directly changed in spreadsheet by user<br>2 - Results for overrun and undershoot consider all movements<br>challenging the RSA<br>3 - Results for veer-off consider the movements operating on the<br>specific runway<br>4 - Histogram only contains data for overruns and undershoots on the<br>Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          | -         |         |         |             | 20%               |
| <ul> <li>1 - Fields in orange may be directly changed in spreadsheet by user</li> <li>2 - Results for overrun and undershoot consider all movements<br/>challenging the RSA</li> <li>3 - Results for veer-off consider the movements operating on the<br/>specific runway</li> <li>4 - Histogram only contains data for overruns and undershoots on the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 - |            |          | -         | -       |         |             |                   |
| challenging the RSA<br>3 - Results for veer-off consider the movements operating on the<br>specific runway<br>4 - Histogram only contains data for overruns and undershoots on the<br>Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          |           | _       |         |             | 10%               |
| 3 - Results for veer-off consider the movements operating on the<br>specific runway     4 - Histogram only contains data for overruns and undershoots on the     Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd undershoot co                                                                                                | nsider all move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 -   |            |          |           |         |         | _           | 0%                |
| 4 - Histogram only contains data for overruns and undershoots on the Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8     | 0 00 00    | 8 8 8    | 80 6      | 0 80 80 | 5 6 6   | 32 1        |                   |
| 4 - Histogram only contains data for overruns and undershoots on the Probability Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onsider the move                                                                                                | ments operatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ig on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5250  | 6E 26E 37E | A76 5760 | 685 186   | 898 998 | 12 1200 | 440.        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ains data for overr                                                                                             | uns and unders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hoots on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.50  | 90 92 C    |          |           |         |         |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            | Pro      | oaomityin | reivai  |         |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a ann an an Shi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |          |           |         |         |             |                   |

Results are presented in both tabular and graphical format. Each folder contains the risk estimates for each type of incident and individual operation and the total risk during landings and takeoffs. A summary of the results is presented in the *Summary* folder shown in the previous screen. The summary table is shown below. It is very important to understand the information contained in the three tables shown.

The first table contains the *Airport Annual Volume* and the expected *Annual Traffic Growth Rate* and these values may also be modified by the user in the output spreadsheet. By changing these values, the average number of years between incidents will also change to reflect the new volume of traffic estimated for future years. The second information, the *Target Level of Safety (TLS)*, may also be modified in the spreadsheet and the value will impact on the percentage of movements above the TLS (4<sup>th</sup> column in the large table).

| Airport Annual Volume:        | 50,000  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 2.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

The second table is titled *Risk of Movements Challenging the RSA* and contains results for the RSA adjacent to the arrival end of the runway selected per type of event (column 1). For example, if the user selected to output results for runway 15, this table presents the analysis results for overruns and undershoots occurring in the area adjacent to the arrival end of runway 15. These incidents are those

associated with the movements challenging this RSA, and may take place when aircraft land on runway 15 (undershoots) or when aircraft land or takeoff on runway 33 (overruns).

| Incident | Average<br>Probability | Avrg # of Years<br>to Incident/<br>Accident | %<br>Movements<br>Above TLS | Avrg # of Years to<br>Critical Incident<br>for TLS |
|----------|------------------------|---------------------------------------------|-----------------------------|----------------------------------------------------|
| LDOR     | 1.0E-09                | >100                                        | 0.0                         | 50                                                 |
| TOOR     | 6.3E-08                | >100                                        | 0.0                         | 47                                                 |
| LDUS     | 2.6E-08                | >100                                        | 0.0                         | 52                                                 |
| Total    | 3.1E-08                | >100                                        | 0.0                         | 22                                                 |

| <b>Risk for Movements</b> | Challenging BSA |
|---------------------------|-----------------|
| Risk for wovements        | Challenging KSA |

The second column shows the average probability of incident outside the RSA and the third column contains the average number of years expected between events; in this case, when the result is greater than 100, the ">100" value is informed. The fourth column provides the percentage of movements with risk higher than the adopted TLS. The fact that some operations are subject to such higher risk does not means that the operations are unacceptable. However it is desired that the percentage of such flights be minimized for each runway and for the whole airport.

The third table titled Veer-Off Risk for Movements on the selected runway contains results for veer-off only. This is necessary because it is a different area and comprises the lateral safety areas between the runway ends. The configuration of this table is similar to that presenting the results for the RSA (second table).

| Veer-Off | Risk for Moveme | nts on RWY | 15  |    |
|----------|-----------------|------------|-----|----|
| LDVO     | 1.7E-07         | >100       | 3.8 | 52 |
| τονο     | 4.0E-08         | >100       | 0.0 | 45 |
| Total    | 9.9E-08         | >100       | 1.7 | 30 |

The histogram shown in the Summary folder contains the data for each movement challenging the RSA adjacent to the arrival end of the runway selected. Therefore the data is only for overruns and undershoots only. Similar histograms for each individual type of incident are available in the *Plots* folder. Please note the total number of movements is higher than the number of movements for the airport and the reason is that one landing will challenge the arrival end RSA for undershoot, the departure end for overrun, and the lateral safety areas for veer-off.

## **Results for the Airport**

To see the results for the airport as a whole, select *Output/Airport* and the following screen will appear.



Again, it is necessary to create the output if this procedure has not been performed earlier. The user may select the type of output and click *Open Summary for Airport* to view the results in a spreadsheet as shown in the screen below.



### RSA Risk Analysis - Summary of Results

Avrg # of Years to

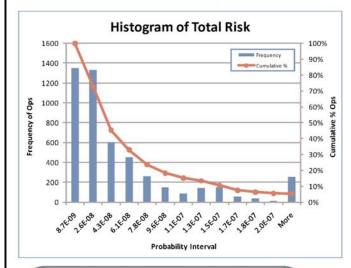
**Overall Results** 

Normal Analysis

| Summary Table | Summar | v Table |  |
|---------------|--------|---------|--|
|---------------|--------|---------|--|

| verage | Avrg # of Years | % Ops Abc |
|--------|-----------------|-----------|

| Accident | Probability | to Critical<br>Incident | TLS | Critical Incident<br>for TLS |
|----------|-------------|-------------------------|-----|------------------------------|
| LDOR     | 1.2E-09     | >100                    | 0.0 | 30                           |
| TOOR     | 6.8E-08     | >100                    | 0.0 | 30                           |
| LDUS     | 2.2E-08     | >100                    | 0.0 | 30                           |
| LDVO     | 1.6E-07     | 89                      | 3.7 | 30                           |
| тоvо     | 4.5E-08     | >100                    | 0.0 | 30                           |
| Total    | 1.5E-07     | 66                      | 0.1 | 17                           |


| Airport Annual Volume:        | 50,000  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 2.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Airport: Anywhere Airport

Date of Analysis: 12/1/2010

Analyst: Jane Doe

Note: fields in yellow may be changed by user



#### Notes

 Fields in orange may be directly changed in spreadsheet by user
 Results for overrun and undershoot consider all movements challenging each RSA adjacent to the ends of each runway
 The total risk for the airport is per movement (landing and takingtransport)

off) 4 - Each take off will challenge the RSA adjacent to the departure end for overruns and the lateral safety areas for veer-offs

 5 - Each landing will challenge the RSA adjacent to the arrival end for undershoots, the RSA adjacent to the departure end for overruns and

the lateral safety areas for veer-off 6 - Histogram for the whole airport is for any type of event and include

each movement challenging the RSA

### Summary of Results by Runway

Risk in Events per Operation

| Type of Accident | RSA      |          |  |
|------------------|----------|----------|--|
|                  | 15       | 33       |  |
| LDOR             | 1.00E-09 | 1.33E-09 |  |
| TOOR             | 6.28E-08 | 7.26E-08 |  |
| LDUS             | 2.61E-08 | 1.90E-08 |  |
| LDVO             | 1.72E-07 | 1.57E-07 |  |
| тоvо             | 4.03E-08 | 5.09E-08 |  |

Average # of Years Between Accidents

| Type of Accident | RSA  |      |
|------------------|------|------|
|                  | 15   | 33   |
| LDOR             | >100 | >100 |
| TOOR             | >100 | >100 |
| LDUS             | >100 | >100 |
| LDVO             | >100 | >100 |
| τονο             | >100 | >100 |

#### Percent Events Above 1.0E-06

| Type of Accident | RSA  |      |
|------------------|------|------|
|                  | 15   | 33   |
| LDOR             | 0.00 | 0.00 |
| TOOR             | 0.00 | 0.00 |
| LDUS             | 0.00 | 0.00 |
| LDVO             | 3.80 | 3.61 |
| тоvо             | 0.00 | 0.00 |

### Summary of Operations Challenging the RSAs

Movements Challenging each RSA

| Type of Accident | RSA  |      |
|------------------|------|------|
|                  | 15   | 33   |
| LDOR             | 471  | 447  |
| TOOR             | 520  | 548  |
| LDUS             | 447  | 471  |
| LDVO             | 447  | 471  |
| тоvо             | 548  | 520  |
| Total            | 2433 | 2457 |

The tables are similar to those presented for individual runways, except that results for all types of incidents/accidents are consolidated and data for individual risk for any type of event are consolidated into the histogram. In addition, individual tables containing results for each runway are also presented.

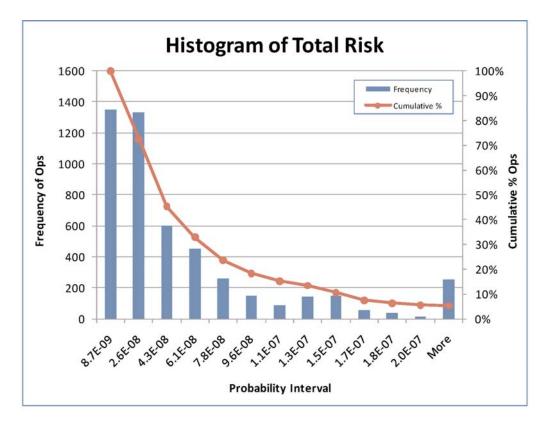
Similar to the output for individual runways, the spreadsheet also provides a *Plots* folder containing histograms for individual types of incidents/accidents for the airport as a whole.

An example of the first table is shown below. It contains in the second column the average probabilities for each type of event and the total average probability for the airport. In the third column, the average number of years between incidents or accidents is calculated. This number is estimated based on the event probability, the annual volume of operations challenging the RSA for the given event, and the expected growth rate. Please note that this number is not to predict how many years it will take for that accident to happen; rather, it is an indication on how frequently the event can take place if the same conditions of operations are kept for a very long period of activity at the airport.

The fourth column indicates the percentage of movements challenging the RSA that have a risk higher than the selected TLS (e.g. for landing veer-offs (LDVO), 3.7% of the movements are under a risk higher than 1.0E-06, (one in one million movements).

Finally, column 5 contains the estimated number of years between events for the selected TLS. The results in this column are calculated using the same method used to estimate the results in the third column, except that the risk used is the TLS.

The table immediately below has the airport volume of operations (annual number of movements (landings and takeoffs), the expected annual growth rate of traffic, and the selected TLS. These numbers can be directly changed in the spreadsheet and new values will be calculated for the third, fourth and fifth columns of the main table.


## **Overall Results**

| Accident | Average<br>Probability | Avrg # of Years<br>to Critical<br>Incident | % Ops Above<br>TLS | Avrg # of Years to<br>Critical Incident<br>for TLS |
|----------|------------------------|--------------------------------------------|--------------------|----------------------------------------------------|
| LDOR     | 1.2E-09                | >100                                       | 0.0                | 30                                                 |
| TOOR     | 6.8E-08                | >100                                       | 0.0                | 30                                                 |
| LDUS     | 2.2E-08                | >100                                       | 0.0                | 30                                                 |
| LDVO     | 1.6E-07                | 89                                         | 3.7                | 30                                                 |
| тоvо     | 4.5E-08                | >100                                       | 0.0                | 30                                                 |
| Total    | 1.5E-07                | 66                                         | 0.1                | 17                                                 |

Summary Table

| Airport Annual Volume:        | 50,000  |
|-------------------------------|---------|
| Expected Traffic growth rate: | 2.00%   |
| Target Level of Safety (TLS): | 1.0E-06 |

Below the main table, a plot with the total distribution of risk is shown. Data used for this plot are originated from each type of event and two results are presented. The bars comprise the histogram of risk and each bar represents a given risk level shown in the x-axis. The percentage of operations for each bar is read on the left y-axis. The red line indicates the percentage of movements that have a risk higher than the value read in the x-axis (e.g. approximately 15% of movements are subject to risk higher than 1.1E-7 (or one event in 9,090,000 movements).



Additional tables are shown on the right of the main table. The first one is shown below and presents the average risk level for each type of event and the associated RSA challenged by the movements.

## Summary of Results by Runway

| Tune of Assidant | RSA      |          |  |  |
|------------------|----------|----------|--|--|
| Type of Accident | 15       | 33       |  |  |
| LDOR             | 1.00E-09 | 1.33E-09 |  |  |
| TOOR             | 6.28E-08 | 7.26E-08 |  |  |
| LDUS             | 2.61E-08 | 1.90E-08 |  |  |
| LDVO             | 1.72E-07 | 1.57E-07 |  |  |
| τονο             | 4.03E-08 | 5.09E-08 |  |  |

Risk in Events per Operation

The table below presents the average number of years to occur one accident if the operational conditions were similar during a long period of activity. Similar to the previous table, the results are provided by RSA challenged by aircraft movements at the airport.

Average # of Years Between Accidents

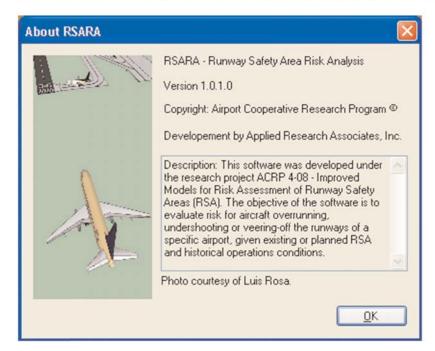
| Tune of Assidant | RSA  |      |  |
|------------------|------|------|--|
| Type of Accident | 15   | 33   |  |
| LDOR             | >100 | >100 |  |
| TOOR             | >100 | >100 |  |
| LDUS             | >100 | >100 |  |
| LDVO             | >100 | >100 |  |
| τονο             | >100 | >100 |  |

The third table in the group shows the percentage of movements challenging each RSA that are subject to risk level higher than one accident in one million operations.

| Tune of Assidant | RSA  |      |  |
|------------------|------|------|--|
| Type of Accident | 15   | 33   |  |
| LDOR             | 0.00 | 0.00 |  |
| TOOR             | 0.00 | 0.00 |  |
| LDUS             | 0.00 | 0.00 |  |
| LDVO             | 3.80 | 3.61 |  |
| тоvо             | 0.00 | 0.00 |  |

Percent Events Above 1.0E-06

The final table shows the total number of movements that challenge each RSA. These values are based on the HOD sample used for the analysis.


# **Summary of Operations Challenging the RSAs**

Movements Challenging each RSA

| Turne of Assidant | RSA  |      |  |  |
|-------------------|------|------|--|--|
| Type of Accident  | 15   | 33   |  |  |
| LDOR              | 471  | 447  |  |  |
| TOOR              | 520  | 548  |  |  |
| LDUS              | 447  | 471  |  |  |
| LDVO              | 447  | 471  |  |  |
| тоvо              | 548  | 520  |  |  |
| Total             | 2433 | 2457 |  |  |

# **11. Help and Troubleshooting**

The last option in the main menu is *Help*. When selecting this option *Help/Content*, a pdf version of this User Guide will open. If the user selects *Help/About*, the following screen will be presented.



# **Attachment A – Historical Operations Data**

This section describes the procedure to prepare historical operations data for the airport. The historical operations data provided is consolidated internally in the program with the weather information provided (see Attachment B). The process is used to characterize the sample operations for the airport and weather conditions that these operations were subject.

Ideally a sample of data covering one full year of recent operations should be prepared to run the analysis. Having one year of data will help take into consideration seasonal weather and operational variations.

A Microsoft Excel (2007 or later) spreadsheet is used to enter the Historical Operations Data and create the sample. To create this database, select Input Data/Historical Operations Database and the following screen will open.

| Input Historica       | l Operations            |               |               |          |                 |
|-----------------------|-------------------------|---------------|---------------|----------|-----------------|
| Existing Historical O | )perations in the Datab | ase           |               |          |                 |
| HOD ID                | DATE&TIME               | RUNWAY        | Arr/Dep       | FAA_Code | FLIGHT_Category |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |
| <                     |                         | 111           |               |          | X               |
| Total number of rec   | cords: 0                |               |               |          |                 |
|                       |                         | Create New    | Import Data   |          |                 |
|                       |                         | Input File    | from New File |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         | Edit Existing | Done          |          |                 |
|                       |                         | Input File    | Done          |          |                 |
|                       |                         |               |               |          |                 |
|                       |                         |               |               |          |                 |

To create the operations file, click on Create New and a dialog box will open.

| Select Excel Fil        | le Containing NOD Data forInput Historical Operations | ? 🔀          |
|-------------------------|-------------------------------------------------------|--------------|
| Look jn:                | 🔁 Example_2                                           |              |
| My Recent<br>Documents  | CA Drawings<br>Example_2<br>Example_2                 |              |
| Desktop<br>My Documents |                                                       |              |
| My Computer             |                                                       |              |
| <b></b>                 | File name:                                            | <u>O</u> pen |
| My Network              | Files of type:                                        | Cancel       |

Please enter a file name and the Excel spreadsheet will open with eight columns as shown below.

|          | 1 2 6            |                        |                     | Microsoft Exce | 1       |          |                 |             | × |
|----------|------------------|------------------------|---------------------|----------------|---------|----------|-----------------|-------------|---|
|          | Home Inst        |                        | ormulas Data Review | View Devel     | oper    |          |                 |             | 0 |
|          | A1               |                        | D_ID                |                | J.      |          |                 |             | × |
| 1        | Example Historic | al Ops Input (Compatib | ility Mode]         |                |         |          |                 | _ = ×       | ~ |
|          | A                | В                      | C                   | D              | E       | F        | G               | н           |   |
| 1        | HOD_ID           | DATE&TIME              | RUNWAY_DESIGNATION  | BOUND          | FLIGHT# | FAA_Code | FLIGHT_Category | FLIGHT_Type |   |
| 2        |                  |                        |                     |                |         |          |                 |             |   |
| 3        |                  |                        |                     |                |         |          |                 |             |   |
| 4        |                  |                        |                     |                |         |          |                 |             |   |
| 5        |                  |                        |                     |                |         |          |                 |             |   |
| 6        |                  |                        |                     |                |         |          |                 |             |   |
| 8        |                  |                        |                     |                |         |          |                 |             |   |
| 9        |                  |                        | -                   |                |         |          |                 |             |   |
| 10       |                  |                        |                     |                |         |          |                 |             |   |
| 11       |                  |                        |                     |                |         |          |                 |             |   |
| 12       |                  |                        |                     |                |         |          |                 |             |   |
| 13       |                  |                        |                     |                |         |          |                 |             |   |
| 14       |                  |                        |                     |                |         |          |                 |             |   |
| 15       |                  |                        |                     |                |         |          |                 |             |   |
| 16       |                  |                        |                     |                |         |          |                 |             |   |
| 17       |                  |                        |                     |                |         |          |                 |             |   |
| 18       |                  |                        |                     |                |         |          |                 |             |   |
| 19<br>20 |                  |                        |                     |                |         |          |                 |             |   |
| 14 4     | + H NOD          |                        |                     |                |         |          |                 | > .         |   |
| Ready    |                  |                        |                     |                |         |          | <b>100%</b> 🕤   |             |   |

Each line in the spreadsheet should correspond to one record. The following table contains a description of each field.

| Field                                                         | Description                                                        | Format                                                                     |
|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| HOD_ID                                                        | This is an ID for the record and                                   | Any format may be used. This information is                                |
|                                                               | any reference may be used by the                                   | not used by the program and is intended                                    |
|                                                               | person creating the database. We                                   | only to be a reference for the user.                                       |
|                                                               | suggest to enter a number,                                         |                                                                            |
|                                                               | starting from 1 to the last record                                 |                                                                            |
|                                                               | number, as shown in the example                                    |                                                                            |
|                                                               | below.                                                             |                                                                            |
| DATE&TIME                                                     | This is the date and time when the                                 | The format includes date and time, and is                                  |
|                                                               | aircraft movement took place                                       | already set in the template provided with                                  |
|                                                               |                                                                    | the program. Please see example below.                                     |
| RWY_DESIGNATION                                               | This is the runway designation                                     | The runway number and letter should be                                     |
|                                                               | where the movement took place.                                     | included (e.g. 14R or 23).                                                 |
| BOUND                                                         | If the movement is an arrival or                                   | Use <b>A</b> for arrival and <b>D</b> for departure                        |
|                                                               | departure.                                                         |                                                                            |
| FLIGHT#                                                       | The flight number for the                                          | Any format can be used (e.g. AAL622). This                                 |
|                                                               | movement.                                                          | information is <u>for user reference only</u> and                          |
|                                                               |                                                                    | does not need to be filled in because the                                  |
|                                                               | This is the code wood by the FAA                                   | program does not require it.<br>The code must match those available in the |
| FAA_CODE                                                      | This is the code used by the FAA to characterize the aircraft type | aircraft database. For example B733 is used                                |
|                                                               | and model.                                                         | for the Boeing 737-300 aircraft. When                                      |
|                                                               | and model.                                                         | running the analysis, the program will                                     |
|                                                               |                                                                    | attempt to match this code to one of the                                   |
|                                                               |                                                                    | codes in the aircraft library. If the program is                           |
|                                                               |                                                                    | unable to match to an existing aircraft code,                              |
|                                                               |                                                                    | the record will be saved in a file for missing                             |
|                                                               |                                                                    | data and later the user can insert the new                                 |
|                                                               |                                                                    | aircraft in the database and rerun the                                     |
|                                                               |                                                                    | analysis for missing data records.                                         |
| FLIGHT_CATEGORY                                               | This field is used to characterize                                 | Use AIR for commercial, CAR for cargo, COM                                 |
| n annaichte aisteach <del>, a</del> thaichte Chuilte Fraide B | the type of flight: commercial,                                    | for commuter/taxi and <b>GA</b> for general                                |
|                                                               | cargo, commuter/taxi or general                                    | aviation                                                                   |
|                                                               | aviation (GA)                                                      |                                                                            |
| FLIGHT_TYPE                                                   | This is a code used to characterize                                | Use <b>D</b> for domestic and <b>I</b> for international                   |
| 10.95                                                         | if the flight is arriving from or                                  |                                                                            |
|                                                               | departing to an international                                      |                                                                            |
|                                                               | destination                                                        |                                                                            |

An example of the template filled with the information needed to run the program is shown below.

|    | Home Insert<br>D7  | P                        | M A Review         | View De | L       |          |                 |             |
|----|--------------------|--------------------------|--------------------|---------|---------|----------|-----------------|-------------|
| Ð  | ample Historical C | Ops Input [Compatibilit] | y Mode]            |         |         |          |                 | - 8         |
| 4  | A                  | В                        | С                  | D       | E       | F        | G               | н           |
|    | HOD_ID             | DATE&TIME                | RUNWAY_DESIGNATION | BOUND   | FLIGHT# | FAA_Code | FLIGHT_Category | FLIGHT_Type |
|    | 1                  | 10/1/05 12:12 AM         | 28R                | A       | UAL205  | A320     | AIR             | D           |
|    | 2                  | 10/1/05 12:22 AM         | 28R                | A       | UAL547  | A320     | AIR             | D           |
|    | 3                  | 10/1/05 12:27 AM         | 28R                | D       | JAL6084 | B742     | AIR             | D           |
|    | 4                  | 10/1/05 12:35 AM         | 28R                | A       | CPA086  | B744     | AIR             | D           |
|    | 5                  | 10/1/05 12:37 AM         | 01R                | D       | AAL622  | MD82     | AIR             | D           |
|    | 6                  | 10/1/05 12:42 AM         | 28R                | A       | UAL907  | B763     | AIR             | D           |
|    | 7                  | 10/1/05 12:45 AM         | 01R                | D       | COA1743 | B752     | AIR             | D           |
|    | 8                  | 10/1/05 12:53 AM         | 01R                | D       | MXA145  | A320     | AIR             | D           |
| )  | 9                  | 10/1/05 12:54 AM         | 01R                | D       | NWA362  | A320     | AIR             | D           |
|    | 10                 | 10/1/05 1:08 AM          | 28R                | A       | AWE879  | B733     | AIR             | D           |
|    | 11                 | 10/1/05 1:12 AM          | 28L                | D       | AAR213  | B777     | AIR             | D           |
|    | 12                 | 10/1/05 1:26 AM          | 28R                | D       | CAL003  | B744     | AIR             | D           |
|    | 13                 | 10/1/05 1:32 AM          | 01R                | D       | TAI561  | A320     | AIR             | D           |
|    | 14                 | 10/1/05 1:33 AM          | 28R                | D       | CPA873  | B744     | AIR             | D           |
| 5  | 15                 | 10/1/05 1:44 AM          | 28R                | A       | N147BJ  | BE40     | GA              | D           |
| 8  | 16                 | 10/1/05 2:48 AM          | 01R                | D       | CPA087  | B744     | AIR             | D           |
| 3  | 17                 | 10/1/05 4:04 AM          | 10L                | D       | FDX87   | MD11     | CAR             | D           |
| F. | 18                 | 10/1/05 4:50 AM          | 10L                | D       | NCA153  | B742     | AIR             | D           |
|    | NOD 19             | 10/1/05 4:57 AM          | 28L                | D       | TDX2897 | B742     | AIR             | D           |

If the date and time format is not matching the format presented in the example above, the user may adjust by selecting the column, right-clicking and selecting *Format Cells*. In the dialog box, select Date in the *Category* box and selecting *3/14/01 1:30PM* in the *Type* box, as shown in the screen below.

| Number Alignment                                                                  | Font Border Fill Protection                                                                                                                          |                   |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Lategory:                                                                         |                                                                                                                                                      |                   |
| General<br>Number<br>Currency                                                     | Sample<br>ACTUAL_DATE                                                                                                                                |                   |
| Accounting                                                                        | Iype:                                                                                                                                                |                   |
| Date<br>Time<br>Percentage<br>Fraction<br>Scientific<br>Text<br>Special<br>Custom | 14-Mar<br>14-Mar-01<br>14-Mar-01<br>March-01<br>March-01<br>3/14/01 1:30 PM                                                                          |                   |
| custom                                                                            | Locale (location):                                                                                                                                   |                   |
|                                                                                   | English (U.S.)                                                                                                                                       |                   |
|                                                                                   |                                                                                                                                                      |                   |
| egin with an asterisk ('                                                          | e and time serial numbers as date values. Da<br>) respond to changes in regional date and tim<br>ng system. Formats without an asterisk are n<br>ps. | e settings that a |

# **Attachment B - Historical Weather Data**

This section describes the procedure to prepare historical weather data for the airport. The historical weather data provided is consolidated internally in the program with the historical operations information provided (see Attachment A). The process is used to characterize the sample operations for the airport and weather conditions that these operations were subject.

The period for <u>weather data must match the same period for historical operations data</u>. Having one year of data will help take into consideration seasonal weather and operational variations.

A Microsoft Excel (2007 or later) spreadsheet is used to enter the Historical Operations Data and create the sample. To create this database, select Input Data/Weather Database and the following screen will open.

| Input Weather D        | ata               |                             |                                      |               |              |
|------------------------|-------------------|-----------------------------|--------------------------------------|---------------|--------------|
| Existing Weather Data  | a in the Database |                             |                                      |               |              |
| Date&Time              | Visibility (SM)   | Wind<br>Direction_deg       | Wind Speed<br>(knots)                | Air Temp (°F) | Ceiling (ft) |
|                        |                   |                             |                                      |               |              |
|                        |                   |                             |                                      |               |              |
|                        |                   |                             |                                      |               |              |
|                        |                   |                             |                                      |               |              |
|                        |                   |                             |                                      |               |              |
|                        |                   |                             |                                      |               |              |
| Cotal number of record | de: D             | _                           |                                      |               | >            |
|                        |                   |                             |                                      | )             | >            |
|                        |                   | Create New<br>Input File    | Import Data<br>from New File         |               | 8            |
|                        |                   |                             | Import Data<br>from New File         | ]             | <u>×</u>     |
| Total number of record |                   | Input File<br>Edit Existing | Import Data<br>from New File<br>Done | ]             | <u>×</u>     |
|                        |                   | Input File                  | from New File                        | ]             | X            |

To create the weather file, click on Create New and a dialog box will open.

| Select Excel Fil       | le Containing Weather Data forInput Weather Data | ? 🔀          |
|------------------------|--------------------------------------------------|--------------|
| Look jn:               | 🗁 seca 💽 🌀 🦻 📰 -                                 |              |
| My Recent<br>Documents | CA Drawings                                      |              |
| Desktop                |                                                  |              |
| My Documents           |                                                  |              |
| My Computer            |                                                  |              |
|                        | File name:                                       | <u>O</u> pen |
| My Network             | Files of type:                                   | Cancel       |

Please enter a file name and the Excel spreadsheet will open with twenty columns as shown below.

| -  | Home Inse<br>A1 | rt Page Layout     | Formulas Data      | Review View      | Developer  |            |               | 0 - 0 |  |
|----|-----------------|--------------------|--------------------|------------------|------------|------------|---------------|-------|--|
|    |                 | $\bullet$ (3 $f_x$ | Date&Time          |                  |            |            |               |       |  |
|    | A               | В                  | С                  | D                | E          | F          | G             | Н     |  |
| 1  | Date&Time       | Visibility_NM      | Wind Direction_deg | Wind Speed_knots | Air Temp_F | Ceiling_ft | Thunderstorms | Rain  |  |
| 2  |                 |                    |                    |                  |            |            |               |       |  |
| 3  |                 |                    |                    |                  |            |            |               |       |  |
|    |                 |                    |                    |                  |            |            |               |       |  |
| 5  |                 |                    |                    |                  |            |            |               |       |  |
| 5  |                 |                    |                    |                  | []         |            |               |       |  |
|    |                 |                    |                    |                  |            |            |               |       |  |
| 1  |                 |                    |                    |                  |            |            |               |       |  |
| R. |                 |                    |                    |                  |            |            |               |       |  |
| 0  |                 |                    |                    |                  |            |            |               |       |  |
| 1  |                 |                    |                    |                  |            |            |               |       |  |
| 2  |                 |                    |                    |                  |            |            |               |       |  |
| 3  |                 |                    |                    |                  |            |            |               |       |  |
| 1  |                 |                    |                    |                  |            |            |               |       |  |
| 5  |                 |                    |                    |                  |            |            |               |       |  |
| 6  |                 |                    |                    |                  |            |            |               |       |  |
| 7  |                 |                    |                    |                  |            |            |               |       |  |
| 8  |                 |                    |                    |                  |            |            |               |       |  |
| 9  |                 |                    |                    |                  |            |            |               |       |  |
| D  |                 |                    |                    |                  |            |            |               |       |  |
|    | Climate         |                    |                    |                  |            |            |               | >     |  |

Each line in the spreadsheet should correspond to one record. The following table contains a description of each field.

| Field              | Description                                                                                                                                                                                                    | Format                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Date&Time          | This is the date and time when the weather measures were taken                                                                                                                                                 | The format includes<br>date and time, and is<br>already set in the    |
|                    |                                                                                                                                                                                                                | template provided with the program.                                   |
| Visibility_NM      | The distance at which a given standard object can be seen and identified with the unaided eye                                                                                                                  | Nautical Miles (NM)                                                   |
| Wind Direction_deg | The true direction from which the wind is blowing at<br>a given location (i.e., wind blowing from the north to<br>the south is a north wind). A wind direction of 0<br>degrees is only used when wind is calm. | In degrees clockwise<br>through 360 degrees.<br>North is 360 degrees. |
| Wind Speed_knots   | The rate at which air is moving horizontally past a given point. It may be a 2-minute average speed (reported as wind speed) or an instantaneous speed (reported as a peak wind speed, wind gust, or squall).  | Knots (kts)                                                           |
| Air Temp_F         | The ambient temperature indicated by a thermometer exposed to the air but sheltered from direct solar radiation.                                                                                               | Degrees Fahrenheit (F)                                                |
| Ceiling_ft         | The height of the cloud base for the lowest broken or overcast cloud layer.                                                                                                                                    | Feet (ft)                                                             |

| Field              | Description                                                                                                                                                                                                                                                                                                                                         | Format                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Thunderstorm       | A local storm produced by a cumulonimbus cloud and accompanied by lightning and thunder                                                                                                                                                                                                                                                             | Presence (TRUE) or not<br>(FALSE) |
| Rain               | Precipitation that falls to earth in drops more than 0.5 mm in diameter.                                                                                                                                                                                                                                                                            | Presence (TRUE) or not<br>(FALSE) |
| Rain Showers       | A brief period of rain                                                                                                                                                                                                                                                                                                                              | Presence (TRUE) or not<br>(FALSE) |
| Freezing Rain      | Rain that falls as a liquid but freezes into glaze upon contact with the ground.                                                                                                                                                                                                                                                                    | Presence (TRUE) or not<br>(FALSE) |
| Freezing Drizzle   | A drizzle that falls as a liquid but freezes into glaze or<br>rime upon contact with the cold ground or surface<br>structures.                                                                                                                                                                                                                      | Presence (TRUE) or not<br>(FALSE) |
| Snow               | Precipitation in the form of ice crystals, often<br>agglomerated into snowflakes, formed directly from<br>the freezing [deposition] of the water vapor in the air.                                                                                                                                                                                  | Presence (TRUE) or not<br>(FALSE) |
| Snow Pellets       | Precipitation, usually of brief duration, consisting of<br>crisp, white, opaque ice particles, round or conical in<br>shape and about 2 to 5 mm in diameter. Same as<br>graupel or small hail.                                                                                                                                                      | Presence (TRUE) or not<br>(FALSE) |
| Ice Crystals       | A barely visible crystalline form of ice that has the<br>shape of needles, columns or plates. Ice crystals are<br>so small that they seem to be suspended in air. Ice<br>crystals occur at very low temperatures in a stable<br>atmosphere.                                                                                                         | Presence (TRUE) or not<br>(FALSE) |
| Snow Showers       | Short duration of moderate snowfall. Some accumulation is possible.                                                                                                                                                                                                                                                                                 | Presence (TRUE) or not<br>(FALSE) |
| Ice Pellets        | Same as Sleet; defined as pellets of ice composed of frozen or mostly frozen raindrops or refrozen partially melted snowflakes. These pellets of ice usually bounce after hitting the ground or other hard surfaces. Heavy sleet is a relatively rare event defined as an accumulation of ice pellets covering the ground to a depth of ½" or more. | Presence (TRUE) or not<br>(FALSE) |
| Ice Pellet Showers | Short duration of ice pellet precipitation.                                                                                                                                                                                                                                                                                                         | Presence (TRUE) or not<br>(FALSE) |
| Fog                | Fog is water droplets suspended in the air at the Earth's surface. Fog often degrades the visibility.                                                                                                                                                                                                                                               | Presence (TRUE) or not<br>(FALSE) |
| Gusts              | A rapid fluctuation of wind speed with variations of 10 knots or more between peaks and lulls.                                                                                                                                                                                                                                                      | Presence (TRUE) or not<br>(FALSE) |

An example of the template filled with the information needed to run the program is shown below.

| -   | Home Insert     | Page Layout   | Formulas Data      | Review View      | Developer  |            |               | 0 - 7 |
|-----|-----------------|---------------|--------------------|------------------|------------|------------|---------------|-------|
|     |                 | • ( fx        | Date&Time          |                  |            |            |               |       |
| 2   | A               | В             | С                  | D                | E          | F          | G             | Н     |
| 1   | Date&Time       | Visibility_NM | Wind Direction_deg | Wind Speed_knots | Air Temp_F | Ceiling_ft | Thunderstorms | Rain  |
| 2   | 7/5/05 6:00 AM  | 337.5         | 250                | 9.0              | 55.0       | 1100       | FALSE         | FALSE |
| 3   | 7/5/05 7:00 AM  | 270.1         | 230                | 5.0              | 55.0       | 1100       | FALSE         | FALSE |
| 4   | 7/5/05 8:00 AM  | 303.6         | 220                | 10.0             | 57.0       | 1100       | FALSE         | FALSE |
| 5   | 7/5/05 9:00 AM  | 337.5         | 260                | 9.0              | 61.0       | 1300       | FALSE         | FALSE |
| 6   | 7/5/05 10:00 AM | 335.5         | 270                | 11.0             | 61.0       | 1300       | FALSE         | FALSE |
| 7   | 7/5/05 11:00 AM | 337.5         | 260                | 12.0             | 63.0       | 1300       | FALSE         | FALSE |
| 8   | 7/5/05 12:00 PM | 337.5         | 280                | 13.0             | 63.0       | 1300       | FALSE         | FALS  |
| 9   | 7/5/05 1:00 PM  | 337.5         | 250                | 14.0             | 64.0       | 1300       | FALSE         | FALS  |
| 10  | 7/5/05 2:00 PM  | 337.5         | 270                | 16.0             | 63.0       | 1300       | FALSE         | FALS  |
| 11  | 7/5/05 3:00 PM  | 337.5         | 280                | 16.0             | 63.0       | 1300       | FALSE         | FALS  |
| 12  | 7/5/05 4:00 PM  | 335.5         | 280                | 15.0             | 63.0       | 1300       | FALSE         | FALS  |
| 13  | 7/5/05 5:00 PM  | 337.5         | 260                | 15.0             | 61.0       | 1300       | FALSE         | FALS  |
| 14  | 7/5/05 6:00 PM  | 337.5         | 270                | 13.0             | 59.0       | 1300       | FALSE         | FALS  |
| 15  | 7/5/05 7:00 PM  | 337.5         | 260                | 12.0             | 57.0       | 1300       | FALSE         | FALSE |
| 16  | 7/5/05 8:00 PM  | 337.5         | 260                | 12.0             | 57.0       | 1300       | FALSE         | FALSE |
| 17  | 7/5/05 9:00 PM  | 337.5         | 250                | 12.0             | 57.0       | 1300       | FALSE         | FALSE |
| 18  | 7/5/05 10:00 PM | 335.5         | 280                | 9.0              | 57.0       | 1300       | FALSE         | FALSE |
| 19  | 7/5/05 11:00 PM | 337.5         | 260                | 9.0              | 57.0       | 1300       | FALSE         | FALSE |
| 20  | 7/6/05 12:00 AM | 337.5         | 250                | 12.0             | 57.0       | 1300       | FALSE         | FALSE |
| 4 4 | > > Climate     | 207.5         | 050                | 10.0             |            | 1000       |               |       |

If the date and time format is not matching the format presented in the example above, the user may adjust by selecting the column, right-clicking and selecting *Format Cells*. In the dialog box, select *Date* in the *Category* box and selecting *3/14/01 1:30PM* in the *Type* box, as shown in the screen below.

| Number                                                          | Alignment | Font                                    | Border    | Fill | Protection |  |
|-----------------------------------------------------------------|-----------|-----------------------------------------|-----------|------|------------|--|
| <u>C</u> ategory                                                | :         |                                         |           |      |            |  |
| General<br>Number<br>Currency                                   |           | ACT                                     | UAL_DATE  |      |            |  |
| Accounti                                                        |           | Type:                                   |           |      |            |  |
| Percenta<br>Fraction<br>Scientific<br>Text<br>Special<br>Custom |           | 14-M<br>Mar-0<br>Marcl<br>Marcl<br>3/14 |           |      |            |  |
|                                                                 |           | -                                       | sh (U.S.) |      |            |  |
|                                                                 |           | -                                       |           |      |            |  |

OK

Cancel

×

| AAAE       | American Association of Airport Executives                         |
|------------|--------------------------------------------------------------------|
| AASHO      | American Association of State Highway Officials                    |
| AASHTO     | American Association of State Highway and Transportation Officials |
| ACI–NA     | Airports Council International–North America                       |
| ACRP       | Airport Cooperative Research Program                               |
| ADA        | Americans with Disabilities Act                                    |
| APTA       | American Public Transportation Association                         |
| ASCE       | American Society of Civil Engineers                                |
| ASME       | American Society of Mechanical Engineers                           |
| ASTM       | American Society for Testing and Materials                         |
| ATA        | Air Transport Association                                          |
| ATA        | American Trucking Associations                                     |
| СТАА       | Community Transportation Association of America                    |
| CTBSSP     | Commercial Truck and Bus Safety Synthesis Program                  |
| DHS        | Department of Homeland Security                                    |
| DOE        | Department of Energy                                               |
| EPA        | Environmental Protection Agency                                    |
| FAA        | Federal Aviation Administration                                    |
| FHWA       | Federal Highway Administration                                     |
| FMCSA      | Federal Motor Carrier Safety Administration                        |
| FRA        | Federal Railroad Administration                                    |
| FTA        | Federal Transit Administration                                     |
| HMCRP      | Hazardous Materials Cooperative Research Program                   |
| IEEE       | Institute of Electrical and Electronics Engineers                  |
| ISTEA      | Intermodal Surface Transportation Efficiency Act of 1991           |
| ITE        | Institute of Transportation Engineers                              |
| NASA       | National Aeronautics and Space Administration                      |
| NASAO      | National Association of State Aviation Officials                   |
| NCFRP      | National Cooperative Freight Research Program                      |
| NCHRP      | National Cooperative Highway Research Program                      |
| NHTSA      | National Highway Traffic Safety Administration                     |
| NTSB       | National Transportation Safety Board                               |
| PHMSA      | Pipeline and Hazardous Materials Safety Administration             |
| RITA       | Research and Innovative Technology Administration                  |
| SAE        | Society of Automotive Engineers                                    |
| SAFETEA-LU | Safe, Accountable, Flexible, Efficient Transportation Equity Act:  |
|            | A Legacy for Users (2005)                                          |
| TCRP       | Transit Cooperative Research Program                               |
| TEA-21     | Transportation Equity Act for the 21st Century (1998)              |
| TRB        | Transportation Research Board                                      |
| TSA        | Transportation Security Administration                             |
| U.S.DOT    | United States Department of Transportation                         |